Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Particle transport simulation and effect analysis of CCD irradiated by protons

Zeng Jun-Zhe He Cheng-Fa Li Yu-Dong Guo Qi Wen Lin Wang Bo Maria Wang Hai-Jiao

Citation:

Particle transport simulation and effect analysis of CCD irradiated by protons

Zeng Jun-Zhe, He Cheng-Fa, Li Yu-Dong, Guo Qi, Wen Lin, Wang Bo, Maria, Wang Hai-Jiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Monte Carlo method is used to calculate the energy deposition of proton-irradiated scientific CCD (charge coupled device) structure, and the radiation damage mechanism of the device is analyzed by combining the proton irradiation with the annealing experiments. The ionizing dose in gate oxide layer and the displacement damage dose in silicon deposition are simulated. During irradiation and annealing experiments two main parameters, dark signal and charge transfer efficiency, are investigated. Results show that variations of dark signal and charge transfer efficiency are the same as those with ionizing dose and displacement damage dose. During irradiation, dark signal rises obviously as the fluence of 10 MeV proton increases. Defects and their annealing temperature:the divacancy levels show little annealing effect below 300℃, while the oxygen-vacancy complex is stable up to 350℃, and the phosphorous-vacancy has a characteristic annealing temperature of 150℃. Interface states are annealed totally at 175℃. So the annealing only affects oxide-trapped-charges. Dark signal is greatly reduced after annealing, this phenomenon means that the dark signal is mainly affected by ionization. The surface dark signal proportion of the total dark signal can be calculated by the reduction of dark signal during annealing and this is at least 80% or more. As the fluence of 10 MeV proton increases, the charge transfer efficiency reduces obviously. After annealing, the recovery of charge transfer efficiency changes very little, so the charge transfer efficiency is unaffected by oxide-trapped-charges, since it is reduced due mainly to bulk defects. The final device damage will always be proportional to the amount of initial damage and also to the electrical effect on the device. Hence NIEL scaling implies a universal relation:device damage=kdamage×displacement damage dose, where kdamage is a damage constant depending on the device and the parameter affected, and the displacement damage dose (DD) is the product of the NIEL and the particle fluence. MULASSIS is used to calculate the displacement damage dose in depletion area of P-area and deduce kdamage by combining with the experimental value of charge transfer efficiency; kdamage is calculated to be about 3.50×10-14. The formula for degradation degree of charge transfer efficiency is CTEafter irradiated = 1-Dd×kdamage, this formula is used to estimated CTE and the result is compared with the value from experiment. It is shown that the simulated data is in agreement with the experimental data.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11005152).
    [1]

    Wang M F, Ou H J, Lu W, Liu X Q, Chen X S, Li L, Li N, Shen X C 1998 J. Infrared Millim. Waves 17 76 (in Chinese) [万明芳, 欧海疆, 陆卫, 刘兴权, 陈效双, 李宁, 李娜, 沈学础 1998 红外与毫米波学报 17 74]

    [2]

    Meidinger N, Struder L, Holl P, Soltau H, Zanthier C V 1996 Nuclear Instruments and Methods in Physics Research A 377 298

    [3]

    Bebek C, Groom D, Holland S, Karcher A, Kolbe W, Lee J, Levi M, Palaio N, Turko B, Uslenghi M, Wagner A, Wang G 2002 IEEE Trans. on Nucl. Sci. 49 1221

    [4]

    Chugg A M, Jones R, Moutrie M J, Truscott P R 2004 IEEE Trans. on Nucl. Sci. 51 3579

    [5]

    Pickel J C, Kalma A H, Hopkinson G R, Marshall C J 2003 IEEE Trans. Nucl. Sci. 50 671

    [6]

    Hopkinson G R 1994 Radiation Physics and Chemistry 43 79

    [7]

    Hopkinson G R, Dale C J, Marshall P W 1996 IEEE Trans. on Nucl. Sci. 43 614

    [8]

    Hopkinson G R, Mohammadzadeh A 2004 International Journal of High Speed Electronics and Systems 14 419

    [9]

    Hardy T, Murowinski R, Deen M J 1998 IEEE Trans. Nucl. Sci. 45 154

    [10]

    Song Q 2002 Ph. D. Dissertation (Beijing:Graduate University of Chinese Academy of Sciences) (in Chinese) [宋谦 2002 博士学位论文 (北京:中国科学院研究生院) ]

    [11]

    Chen W H, Du L, Zhuang Y Q, Bao J L, He L, Zhang T F, Zhang X 2012 Acta Phys. Sin 58 4090 (in Chinese) [陈伟华, 杜磊, 庄奕琪, 包军林, 何亮, 张天福, 张雪 2009 58 4090]

    [12]

    Wang Z J, Tang B Q, Xiao Z G, Liu M B, Huang S Y, Zhang Y 2010 Acta Phys. Sin 59 4136 (in Chinese) [王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇 2010 59 4136]

    [13]

    Yu Q K, Tang M, Zhu H J, Zhang H M, Zhang Y W, Sun J X 2008 Spacecr. Envir. Eng. 25 391 (in Chinese) [于庆奎, 唐民, 朱恒静, 张海明, 张延伟, 孙吉兴 2008 航天器环境工程 25 391]

    [14]

    Lei F, Truscott P R, Dyer C S, Quaghebeur B, Heynderickx D, Nieminen P, Evans H, Daly E 2002 IEEE Trans. on Nucl. Sci. 49 2788

    [15]

    Benton J L, Kimerling L C 1982 Journal of the Electrochemical Society 129 2098

    [16]

    Timothy D. Hardy 1994 MS Dissertation (Columbia:Simon Fraser University)

    [17]

    Saigne F, Schrimpf R. D, Fleetwood D M, Cizmarik R, Zander D 2004 IEEE Trans, on Nucl. Sci. 44 1989

    [18]

    Schrimpf R D, Fleetwood D M, Galloway K F, Lacoe R C, Mayer D C, Puhl J M, Pease R L, Suehle J S 2004 IEEE Trans, on Nucl. Sci. 51 2903

    [19]

    Boesch H E 1988 IEEE Trans. on Nucl. Sci. 35 1160

    [20]

    Hardy T D 1994 Effects of Radiation Damage on Scientific Charge Coupled Devices Ph. D. Dissertation (Burnaby:Simon Fraster University)

    [21]

    Bourgoin J, Lanoo M (translated by Cardona) 1983 Point Defects in Semiconductors Ⅱ(Berlin:Springer-Verlag) pp103

    [22]

    Lehmann C 1977 Interaction of Radiation with Solids and Elementary Defect Production (Amsterdam:North Holland) pp127

    [23]

    Wood S, Doyle N J, Spitznagel J A, Choyke W J, More R M, McGruer J N, Irwin R B 1981 IEEE Trans, on Nucl. Sci. 28 4107

    [24]

    Lindstrom G 2003 Nucl. phys. and Meth. in Phys. Res. A 512 30

  • [1]

    Wang M F, Ou H J, Lu W, Liu X Q, Chen X S, Li L, Li N, Shen X C 1998 J. Infrared Millim. Waves 17 76 (in Chinese) [万明芳, 欧海疆, 陆卫, 刘兴权, 陈效双, 李宁, 李娜, 沈学础 1998 红外与毫米波学报 17 74]

    [2]

    Meidinger N, Struder L, Holl P, Soltau H, Zanthier C V 1996 Nuclear Instruments and Methods in Physics Research A 377 298

    [3]

    Bebek C, Groom D, Holland S, Karcher A, Kolbe W, Lee J, Levi M, Palaio N, Turko B, Uslenghi M, Wagner A, Wang G 2002 IEEE Trans. on Nucl. Sci. 49 1221

    [4]

    Chugg A M, Jones R, Moutrie M J, Truscott P R 2004 IEEE Trans. on Nucl. Sci. 51 3579

    [5]

    Pickel J C, Kalma A H, Hopkinson G R, Marshall C J 2003 IEEE Trans. Nucl. Sci. 50 671

    [6]

    Hopkinson G R 1994 Radiation Physics and Chemistry 43 79

    [7]

    Hopkinson G R, Dale C J, Marshall P W 1996 IEEE Trans. on Nucl. Sci. 43 614

    [8]

    Hopkinson G R, Mohammadzadeh A 2004 International Journal of High Speed Electronics and Systems 14 419

    [9]

    Hardy T, Murowinski R, Deen M J 1998 IEEE Trans. Nucl. Sci. 45 154

    [10]

    Song Q 2002 Ph. D. Dissertation (Beijing:Graduate University of Chinese Academy of Sciences) (in Chinese) [宋谦 2002 博士学位论文 (北京:中国科学院研究生院) ]

    [11]

    Chen W H, Du L, Zhuang Y Q, Bao J L, He L, Zhang T F, Zhang X 2012 Acta Phys. Sin 58 4090 (in Chinese) [陈伟华, 杜磊, 庄奕琪, 包军林, 何亮, 张天福, 张雪 2009 58 4090]

    [12]

    Wang Z J, Tang B Q, Xiao Z G, Liu M B, Huang S Y, Zhang Y 2010 Acta Phys. Sin 59 4136 (in Chinese) [王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇 2010 59 4136]

    [13]

    Yu Q K, Tang M, Zhu H J, Zhang H M, Zhang Y W, Sun J X 2008 Spacecr. Envir. Eng. 25 391 (in Chinese) [于庆奎, 唐民, 朱恒静, 张海明, 张延伟, 孙吉兴 2008 航天器环境工程 25 391]

    [14]

    Lei F, Truscott P R, Dyer C S, Quaghebeur B, Heynderickx D, Nieminen P, Evans H, Daly E 2002 IEEE Trans. on Nucl. Sci. 49 2788

    [15]

    Benton J L, Kimerling L C 1982 Journal of the Electrochemical Society 129 2098

    [16]

    Timothy D. Hardy 1994 MS Dissertation (Columbia:Simon Fraser University)

    [17]

    Saigne F, Schrimpf R. D, Fleetwood D M, Cizmarik R, Zander D 2004 IEEE Trans, on Nucl. Sci. 44 1989

    [18]

    Schrimpf R D, Fleetwood D M, Galloway K F, Lacoe R C, Mayer D C, Puhl J M, Pease R L, Suehle J S 2004 IEEE Trans, on Nucl. Sci. 51 2903

    [19]

    Boesch H E 1988 IEEE Trans. on Nucl. Sci. 35 1160

    [20]

    Hardy T D 1994 Effects of Radiation Damage on Scientific Charge Coupled Devices Ph. D. Dissertation (Burnaby:Simon Fraster University)

    [21]

    Bourgoin J, Lanoo M (translated by Cardona) 1983 Point Defects in Semiconductors Ⅱ(Berlin:Springer-Verlag) pp103

    [22]

    Lehmann C 1977 Interaction of Radiation with Solids and Elementary Defect Production (Amsterdam:North Holland) pp127

    [23]

    Wood S, Doyle N J, Spitznagel J A, Choyke W J, More R M, McGruer J N, Irwin R B 1981 IEEE Trans, on Nucl. Sci. 28 4107

    [24]

    Lindstrom G 2003 Nucl. phys. and Meth. in Phys. Res. A 512 30

  • [1] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan. Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells. Acta Physica Sinica, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [3] Bai Ru-Xue, Guo Hong-Xia, Zhang Hong, Wang Di, Zhang Feng-Qi, Pan Xiao-Yu, Ma Wu-Ying, Hu Jia-Wen, Liu Yi-Wei, Yang Ye, Lyu Wei, Wang Zhong-Ming. High-energy proton radiation effect of Gallium nitride power device with enhanced Cascode structure. Acta Physica Sinica, 2023, 72(1): 012401. doi: 10.7498/aps.72.20221617
    [4] Liu Ye, Guo Hong-Xia, Ju An-An, Zhang Feng-Qi, Pan Xiao-Yu, Zhang Hong, Gu Zhao-Qiao, Liu Yi-Tian, Feng Ya-Hui. Data inversion and erroneous annealing of floating gate cell under proton radiation. Acta Physica Sinica, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [5] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [6] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu. Effect of proton irradiation on microstructure evolution of permanent magnet. Acta Physica Sinica, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [7] Zhu-Yue, Zhang Zi-Liang, Yang Yan-Ji, Xue Rong-Feng, Cui Wei-Wei, Lu Bo, Wang Juan, Chen Tian-Xiang, Wang Yu-Sa, Li Wei, Han Da-Wei, Huo Jia, Hu Wei, Li Mao-Shun, Zhang Yi, Zhu Yu-Xuan, Liu Miao, Zhao Xiao-Fan, Chen Yong. Quantum efficiency calibration for low energy detector in hard X-ray modulation telescope satellite. Acta Physica Sinica, 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [8] Zhang Ning, Zhang Xin, Yang Ai-Xiang, Ba De-Dong, Feng Zhan-Zu, Chen Yi-Feng, Shao Jian-Xiong, Chen Xi-Meng. Damage effects of proton beam irradiation on single layer graphene. Acta Physica Sinica, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [9] Yang Jian-Qun, Li Xing-Ji, Ma Guo-Liang, Liu Chao-Ming, Zou Meng-Nan. Effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes film. Acta Physica Sinica, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [10] Wang Bo, Li Yu-Dong, Guo Qi, Liu Chang-Ju, Wen Lin, Ren Di-Yuan, Zeng Jun-Zhe, Ma Li-Ya. Dark signal degradation in proton-irradiated complementary metal oxide semiconductor active pixel sensor. Acta Physica Sinica, 2015, 64(8): 084209. doi: 10.7498/aps.64.084209
    [11] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [12] Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang. Effects of proton and neutron irradiation on dark signal of CCD. Acta Physica Sinica, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [13] Lü Ling, Zhang Jin-Cheng, Li Liang, Ma Xiao-Hua, Cao Yan-Rong, Hao Yue. Effects of 3 MeV proton irradiations on AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [14] Wang De-Jiang, Kuang Hai-Peng. Experimental study of the effects on signal noise ratio and dynamic range caused by analog gain for CCD. Acta Physica Sinica, 2011, 60(7): 077208. doi: 10.7498/aps.60.077208
    [15] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [16] Zhao Hui-Jie, He Shi-Yu, Sun Yan-Zheng, Sun Qiang, Xiao Zhi-Bin, Lü Wei, Huang Cai-Yong, Xiao Jing-Dong, Wu Yi-Yong. Effect of 100 keV proton irradiation on photoemission of GaAs/Ge space solar cells. Acta Physica Sinica, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [17] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [18] Fan Xian-Hong, Chen Bo, Guan Qing-Feng. The influence of proton irradiation on the microstructure of pure Al films. Acta Physica Sinica, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [19] Wei Qiang, Liu Hai, He Shi-Yu, Hao Xiao-Peng, Wei Long. Slow positron annihilation study of Al film reflector after proton irradiation. Acta Physica Sinica, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
    [20] NI XIAO-WU, LU JIAN, HE AN-ZHI. STUDY OF HARD-DESTRUCTIVE MECHANISM OF THE CHARGE-COUPLED DEVICES BY A LASER. Acta Physica Sinica, 1994, 43(11): 1795-1802. doi: 10.7498/aps.43.1795
Metrics
  • Abstract views:  6276
  • PDF Downloads:  4168
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2014
  • Accepted Date:  25 November 2014
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map