-
在商用0.35 m互补金属氧化物半导体工艺上制备了两种栅氧化层厚度(tox)的条形栅、环形栅和半环形栅N沟道金属氧化物半导体 (n-channel metal oxide semiconductor, 简记为NMOS) 晶体管, 并进行了2000 Gy(Si)的总剂量辐射效应实验. 实验结果显示, 栅氧厚度对阈值电压漂移的影响大于栅氧厚度的3次方. 对于tox为11 nm的低压NMOS晶体管, 通过环形栅或半环形栅的加固方式能将其抗总剂量辐射能力从300 Gy(Si)提高到2000 Gy(Si)以上; 而对于tox为26 nm的高压NMOS晶体管, 通过环栅或半环栅的加固方式, 则只能在低于1000 Gy(Si)的总剂量下, 一定程度地抑制截止漏电流的增加. 作为两种不同的版图加固方式, 环形栅和半环形栅对同一tox的NMOS器件加固效果类似, 环形栅的加固效果略优于半环形栅. 对于上述实验结果, 进行了理论分析并阐释了产生这些现象的原因.Two-edged-gate, annular-gate and ring-gate N-channel metal oxide semiconductor (NMOS) transistors with two different values of gate oxide thickness (tox) are fabricated in a commercial 0.35 m complementary metal oxide semiconductor (CMOS) process. The tests for the total ionizing dose (TID) effects of the transistors are carried out with a total dose up to 2000 Gy(Si). The results show that the dependence of radiation-induced threshold voltage shift on tox is larger than the power-law tox3. The TID tolerance of the low voltage NMOS (tox=11 nm) is improved from 300 Gy(Si) to over 2000 Gy(Si) by the annular-gate or ring-gate layout. For the high voltage NMOS (tox=26 nm), the annular-gate or ring-gate layout can only mitigate the growth of the off-state leakage current when the total dose is less than 1000 Gy(Si). As radiation hardening techniques, the annular-gate and ring-gate layouts have similar effects, but the annular-gate layout is slightly more effective in terms of the radiation-induced threshold voltage shift and off-state leakage current increase. The test results are theoretically explained by examining and analyzing the experimental data.
-
Keywords:
- annular gate /
- ring gate /
- total ionizing dose /
- radiation effect
[1] Chen P X 2005 Radiation Effects on Semiconductor Devices and Integrated Circuits (Beijing: National Defense Industry Press) p28 (in Chinese) [陈盘训 2005 半导体器件和集成电路的辐射效应 (北京: 国防工业出版社) 第28页]
[2] Hughes H L, Benedetto J M 2003 IEEE Trans. Nucl. Sci. 50 500
[3] Zhao L, Yang X H 2010 Electron. Pack. 10 31 (in Chinese) [赵力, 杨晓花 2010 电子与封装 10 31]
[4] Feng Y J, Hua G X, Liu S F 2007 J. Astron. 28 1071 (in Chinese) [冯彦君, 华更新, 刘淑芬 2007 宇航学报 10 1071]
[5] Dodd P E, Shaneyfelt M R, Schwank J R, Felix J A 2010 IEEE Trans. Nucl. Sci. 57 1747
[6] Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413
[7] Lacoe R C 2008 IEEE Trans. Nucl. Sci. 55 1903
[8] Lacoe R C, Osborn J V, Koga R, Brown S, Mayer D C 2000 IEEE Trans. Nucl. Sci. 55 1903
[9] Chen L, Gingrich D M 2005 IEEE Trans. Nucl. Sci. 52 861
[10] Luo Y H, Guo H X, Zhang F Q, Yao Z B, He B P, Yue S G 2010 Res. Prog. Study Solid Electron. 30 37 (in Chinese) [罗尹虹, 郭红霞, 张凤祁, 姚志斌, 何宝平, 岳素格 2010 固体电子学研究与进展 30 37]
[11] Lacoe R C, Osborn J V, Mayer D C, Brown S, Hunt D R 1998 IEEE Radiation Effects Data Workshop Record Newport Beach, July 24, 1998 p104
[12] Lacoe R C, Osborn J V, Mayer D C, Brown S, Hunt D R 2001 IEEE Radiation Effects Data Workshop Record Vancouver, July 16–20, 2001 p72
[13] He B P, Chen W, Wang G Z 2006 Acta Phys. Sin. 55 3546 (in Chinese) [何宝平, 陈伟, 王桂珍 2006 55 3546]
[14] Nowlin R N, McEndree S R, Wilson A L, Alexander D R 2005 IEEE Trans. Nucl. Sci. 52 2495
[15] Lai Z W, Bao Z M, Song T Q, Wang C H, Huang S M 1998 Radiation Hardening Electronics (Beijing: National Defense Industry Press) p73 (in Chinese) [赖祖武, 包宗明, 宋铁歧, 王长河, 黄胜明 1998 抗辐射电子学 (北京: 国防工业出版社) 第73页]
[16] Gu W P, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161 (in Chinese) [谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 58 1161]
[17] Lacoe R C, Osborn J V, Mayer D C, Brown S 2001 6th European Conference on Radiation and Its Effects on Compenents and Systems September 10–14, 2001 p464
-
[1] Chen P X 2005 Radiation Effects on Semiconductor Devices and Integrated Circuits (Beijing: National Defense Industry Press) p28 (in Chinese) [陈盘训 2005 半导体器件和集成电路的辐射效应 (北京: 国防工业出版社) 第28页]
[2] Hughes H L, Benedetto J M 2003 IEEE Trans. Nucl. Sci. 50 500
[3] Zhao L, Yang X H 2010 Electron. Pack. 10 31 (in Chinese) [赵力, 杨晓花 2010 电子与封装 10 31]
[4] Feng Y J, Hua G X, Liu S F 2007 J. Astron. 28 1071 (in Chinese) [冯彦君, 华更新, 刘淑芬 2007 宇航学报 10 1071]
[5] Dodd P E, Shaneyfelt M R, Schwank J R, Felix J A 2010 IEEE Trans. Nucl. Sci. 57 1747
[6] Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413
[7] Lacoe R C 2008 IEEE Trans. Nucl. Sci. 55 1903
[8] Lacoe R C, Osborn J V, Koga R, Brown S, Mayer D C 2000 IEEE Trans. Nucl. Sci. 55 1903
[9] Chen L, Gingrich D M 2005 IEEE Trans. Nucl. Sci. 52 861
[10] Luo Y H, Guo H X, Zhang F Q, Yao Z B, He B P, Yue S G 2010 Res. Prog. Study Solid Electron. 30 37 (in Chinese) [罗尹虹, 郭红霞, 张凤祁, 姚志斌, 何宝平, 岳素格 2010 固体电子学研究与进展 30 37]
[11] Lacoe R C, Osborn J V, Mayer D C, Brown S, Hunt D R 1998 IEEE Radiation Effects Data Workshop Record Newport Beach, July 24, 1998 p104
[12] Lacoe R C, Osborn J V, Mayer D C, Brown S, Hunt D R 2001 IEEE Radiation Effects Data Workshop Record Vancouver, July 16–20, 2001 p72
[13] He B P, Chen W, Wang G Z 2006 Acta Phys. Sin. 55 3546 (in Chinese) [何宝平, 陈伟, 王桂珍 2006 55 3546]
[14] Nowlin R N, McEndree S R, Wilson A L, Alexander D R 2005 IEEE Trans. Nucl. Sci. 52 2495
[15] Lai Z W, Bao Z M, Song T Q, Wang C H, Huang S M 1998 Radiation Hardening Electronics (Beijing: National Defense Industry Press) p73 (in Chinese) [赖祖武, 包宗明, 宋铁歧, 王长河, 黄胜明 1998 抗辐射电子学 (北京: 国防工业出版社) 第73页]
[16] Gu W P, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161 (in Chinese) [谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 58 1161]
[17] Lacoe R C, Osborn J V, Mayer D C, Brown S 2001 6th European Conference on Radiation and Its Effects on Compenents and Systems September 10–14, 2001 p464
计量
- 文章访问数: 8710
- PDF下载量: 757
- 被引次数: 0