Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and experimental studies of electromagnetic wave transmission in plasma

Zheng Ling Zhao Qing Luo Xian-Gang Ma Ping Liu Shu-Zhang Huang Cheng Xing Xiao-Jun Zhang Chun-Yan Chen Xu-Lin

Citation:

Theoretical and experimental studies of electromagnetic wave transmission in plasma

Zheng Ling, Zhao Qing, Luo Xian-Gang, Ma Ping, Liu Shu-Zhang, Huang Cheng, Xing Xiao-Jun, Zhang Chun-Yan, Chen Xu-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The aircrafts, such as space shuttle, spaceship and so on, are facing the well-known blackout problem when they reentry into the atmosphere. The plasma sheath leads electromagnetic waves to attenuation, and the communications between the aircrafts and the ground to losing, and even completely interrupte, thereby resulting in the loss of radar targets and threatening the lives of the astronauts. Therefore, it is important to study the properties of the electromagnetic wave transmission in plasma. The characteristics of electromagnetic wave transmission in plasma are studied theoretically and experimentally in this paper. The variations of the electromagnetic wave attenuation with plasma density, collision frequency and electromagnetic wave frequency are obtained. The electromagnetic wave attenuation increasean an order of magnitude with plasma density increasing an order of magnitude. The electromagnetic wave attenuation first increases and then decreases with plasma collision frequency increasing, the electromagnetic wave attenuation decreases with the increase of electromagnetic wave frequency. The electromagnetic wave transmission properties in plasma are studied experimentally with shock tube, and the experimental results accord well with the theoretical results. The results show that increasing the electromagnetic wave frequency is an effective way to solve the reentry blackout problem.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB301805), the International Cooperation Projects (Grant No. OS2012R0151), the National High Technology Research and Development Program of China (Grant No. 2011AA7022016), and the Foundation of the State Key Laboratory of Optical Technologies for Microfabrication (Grant No. M160104012011E11).
    [1]

    Mitchell F H 1967 Proc. IEEE 55 619

    [2]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. AES-7 879

    [3]

    Liu J F, Xi X L, Liu Y 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p442

    [4]

    Kim M, Keidar M, Boyd I D 2008 IEEE Tran. Plasma Sci. 36 1198

    [5]

    Liu J F, Xi X L, Wan G B, Wang L L 2011 IEEE Tran. Plasma Sci. 39 852

    [6]

    Lan C H, Jiang Z H, Chen Z Q, Liu M H, Hu X W 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p913

    [7]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445

    [8]

    Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301

    [9]

    Zeng X J, Yu Z F, Bu S Q, Liu S, Ma P, Shi A H, Liang S C 2010 Acta Aerodyn. Sin. 28 645

    [10]

    Kuo S P, Faith J 1997 Phys. Rev. E 56 2143

    [11]

    Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 53 3464]

    [12]

    Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 53 778]

    [13]

    Hu Q L, Liu S B, Li W 2008 Chin. Phys. B 17 1050

    [14]

    Liu M H, Hu X W, Jiang Z H, Liu K F, Gu C L, Pan Y 2002 Acta Phys. Sin. 51 1317 (in Chinese) [刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣 2002 51 1317]

    [15]

    Tang D L, Sun A P, Qiu X M 2002 Acta Phys. Sin. 51 1724 (in Chinese) [唐德礼, 孙爱萍, 邱孝明 2002 51 1724]

    [16]

    Tang D L, Sun A P, Qiu X M, Chu P K 2003 IEEE Tran. Plasma Sci. 31 405

    [17]

    Zhao Q, Liu S Z, Tong H H 2009 Plasma Technology and Its Applications (Beijing: National Defense Industry Press) p40 (in Chinese) [赵青, 刘述章, 童洪辉 2009 等离子体技术及应用(北京: 国防工业出版社)第40页]

    [18]

    Yang H W, Chen R S 2007 Opt. Quantum Electron. 39 1245

    [19]

    Jamison S P, Shen J L, Jones D R, Issac R C, Ersfeld B, Clark D, Jaroszynski D A 2003 J. Appl. Phys. 93 4334

    [20]

    Kolner B H, Buckles R A, Conklin P M, Scott R P 2008 IEEE J. Sel. Top. Quantum Electron. 14 505

    [21]

    Angus J R, Krasheninnikov S I, Smolyakov A I 2010 Phys. Plasmas 17 102115

    [22]

    Weston V H 1967 Phys. Fluids 10 632

    [23]

    Cheng G X, Liu L 2010 IEEE Tran. Plasma Sci. 38 3109

  • [1]

    Mitchell F H 1967 Proc. IEEE 55 619

    [2]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. AES-7 879

    [3]

    Liu J F, Xi X L, Liu Y 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p442

    [4]

    Kim M, Keidar M, Boyd I D 2008 IEEE Tran. Plasma Sci. 36 1198

    [5]

    Liu J F, Xi X L, Wan G B, Wang L L 2011 IEEE Tran. Plasma Sci. 39 852

    [6]

    Lan C H, Jiang Z H, Chen Z Q, Liu M H, Hu X W 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p913

    [7]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445

    [8]

    Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301

    [9]

    Zeng X J, Yu Z F, Bu S Q, Liu S, Ma P, Shi A H, Liang S C 2010 Acta Aerodyn. Sin. 28 645

    [10]

    Kuo S P, Faith J 1997 Phys. Rev. E 56 2143

    [11]

    Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 53 3464]

    [12]

    Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 53 778]

    [13]

    Hu Q L, Liu S B, Li W 2008 Chin. Phys. B 17 1050

    [14]

    Liu M H, Hu X W, Jiang Z H, Liu K F, Gu C L, Pan Y 2002 Acta Phys. Sin. 51 1317 (in Chinese) [刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣 2002 51 1317]

    [15]

    Tang D L, Sun A P, Qiu X M 2002 Acta Phys. Sin. 51 1724 (in Chinese) [唐德礼, 孙爱萍, 邱孝明 2002 51 1724]

    [16]

    Tang D L, Sun A P, Qiu X M, Chu P K 2003 IEEE Tran. Plasma Sci. 31 405

    [17]

    Zhao Q, Liu S Z, Tong H H 2009 Plasma Technology and Its Applications (Beijing: National Defense Industry Press) p40 (in Chinese) [赵青, 刘述章, 童洪辉 2009 等离子体技术及应用(北京: 国防工业出版社)第40页]

    [18]

    Yang H W, Chen R S 2007 Opt. Quantum Electron. 39 1245

    [19]

    Jamison S P, Shen J L, Jones D R, Issac R C, Ersfeld B, Clark D, Jaroszynski D A 2003 J. Appl. Phys. 93 4334

    [20]

    Kolner B H, Buckles R A, Conklin P M, Scott R P 2008 IEEE J. Sel. Top. Quantum Electron. 14 505

    [21]

    Angus J R, Krasheninnikov S I, Smolyakov A I 2010 Phys. Plasmas 17 102115

    [22]

    Weston V H 1967 Phys. Fluids 10 632

    [23]

    Cheng G X, Liu L 2010 IEEE Tran. Plasma Sci. 38 3109

  • [1] Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie. Influence of surface ablation on plasma and its interaction with electromagnetic field. Acta Physica Sinica, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] Yang Yu-Sen, Wang Lin, Gou De-Zhi, Tang Zheng-Ming. Research on Electromagnetic Characteristics of Plasma Photon Crystal Array Structure Waveguide Model. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241300
    [3] Yang Chun-Lin. Propagation characteristics of speckle field in plasma. Acta Physica Sinica, 2018, 67(8): 085201. doi: 10.7498/aps.67.20171795
    [4] Ma Hao-Jun, Wang Guo-Lin, Luo Jie, Liu Li-Ping, Pan De-Xian, Zhang Jun, Xing Ying-Li, Tang Fei. Experimental study of electromagnetic wave transmission characteristics in S-Ka band in plasma. Acta Physica Sinica, 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [5] Yang Xiong, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Three-dimensional direct numerical simulation of helicon discharge. Acta Physica Sinica, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [6] Han Xiang-Lin, Chen Xian-Feng, Mo Jia-Qi. Approximate analytic solution of solitary-like waves in a class of quantum plasma. Acta Physica Sinica, 2014, 63(3): 030202. doi: 10.7498/aps.63.030202
    [7] Song Wei, Shao Hao, Zhang Zhi-Qiang, Huang Hui-Jun, Li Jia-Wei, Wang Kang-Yi, Jing Hong, Liu Ying-Jun, Cui Xin-Hong. High power microwave propagation properties in radio frequency breakdown plasma. Acta Physica Sinica, 2014, 63(6): 064101. doi: 10.7498/aps.63.064101
    [8] Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption. Acta Physica Sinica, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [9] Chen Wen-Bo, Gong Xue-Yu, Lu Xing-Qiang, Feng Jun, Liao Xiang-Bai, Huang Guo-Yu, Deng Xian-Jun. Analysis of one-dimensional electromagnetic wave transmission characteristics of plasma based on a kinetic theory model. Acta Physica Sinica, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [10] Zhou Xian-Chun, Lin Wan-Tao, Lin Yi-Hua, Mo Jia-Qi. Solitary waves solution in atmospheric inhomogeneous quantum plasma. Acta Physica Sinica, 2012, 61(24): 240202. doi: 10.7498/aps.61.240202
    [11] Zheng Ling, Zhao Qing, Liu Shu-Zhang, Xing Xiao-Jun. Studies of terahertz wave propagation in non-magnetized plasma. Acta Physica Sinica, 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [12] Dong Tai-Yuan, Ye Kun-Tao, Liu Wei-Qing. The current status of surface wave plasma source development. Acta Physica Sinica, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [13] Mo Jia-Qi. The solution for a class of nonlinear solitary waves in dusty plasma. Acta Physica Sinica, 2011, 60(3): 030203. doi: 10.7498/aps.60.030203
    [14] Luo Xian-Gang, Ma Chun-Guang, Liu Jian-Wei, Zhao Qing, He Guo, Zheng Ling. Study on attenuation characteristics of millimeterwave in plasma. Acta Physica Sinica, 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [15] Ge Lin, Ji Pei-Yong. Photon’s Berry phase under background of plasma waves. Acta Physica Sinica, 2009, 58(1): 347-353. doi: 10.7498/aps.58.347
    [16] Dispersion analysis of a coupled-cavity slow wave structure filled with plasma. Acta Physica Sinica, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [17] Zhang Min, Wu Zhen-Sen. The moments analysis of the pulse propagation through plasma medium and its applications. Acta Physica Sinica, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [18] Yang Hong-Wei, Chen Ru-Shan, Zhang Yun. SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma. Acta Physica Sinica, 2006, 55(7): 3464-3469. doi: 10.7498/aps.55.3464
    [19] Su Wei-Yi, Yang Juan, Wei Kun, Mao Gen-Wang, He Hong-Qing. Calculation and analysis on the wave reflected characteristics of plasma before the conductor plate. Acta Physica Sinica, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [20] Fu Xi-Quan, Liu Cheng-Yi, Guo Hong. . Acta Physica Sinica, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
Metrics
  • Abstract views:  10589
  • PDF Downloads:  1421
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2011
  • Accepted Date:  04 January 2012
  • Published Online:  05 August 2012

/

返回文章
返回
Baidu
map