-
The aircrafts, such as space shuttle, spaceship and so on, are facing the well-known blackout problem when they reentry into the atmosphere. The plasma sheath leads electromagnetic waves to attenuation, and the communications between the aircrafts and the ground to losing, and even completely interrupte, thereby resulting in the loss of radar targets and threatening the lives of the astronauts. Therefore, it is important to study the properties of the electromagnetic wave transmission in plasma. The characteristics of electromagnetic wave transmission in plasma are studied theoretically and experimentally in this paper. The variations of the electromagnetic wave attenuation with plasma density, collision frequency and electromagnetic wave frequency are obtained. The electromagnetic wave attenuation increasean an order of magnitude with plasma density increasing an order of magnitude. The electromagnetic wave attenuation first increases and then decreases with plasma collision frequency increasing, the electromagnetic wave attenuation decreases with the increase of electromagnetic wave frequency. The electromagnetic wave transmission properties in plasma are studied experimentally with shock tube, and the experimental results accord well with the theoretical results. The results show that increasing the electromagnetic wave frequency is an effective way to solve the reentry blackout problem.
-
Keywords:
- plasma /
- electromagnetic waves transmission
[1] Mitchell F H 1967 Proc. IEEE 55 619
[2] Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. AES-7 879
[3] Liu J F, Xi X L, Liu Y 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p442
[4] Kim M, Keidar M, Boyd I D 2008 IEEE Tran. Plasma Sci. 36 1198
[5] Liu J F, Xi X L, Wan G B, Wang L L 2011 IEEE Tran. Plasma Sci. 39 852
[6] Lan C H, Jiang Z H, Chen Z Q, Liu M H, Hu X W 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p913
[7] Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445
[8] Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301
[9] Zeng X J, Yu Z F, Bu S Q, Liu S, Ma P, Shi A H, Liang S C 2010 Acta Aerodyn. Sin. 28 645
[10] Kuo S P, Faith J 1997 Phys. Rev. E 56 2143
[11] Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 53 3464]
[12] Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 53 778]
[13] Hu Q L, Liu S B, Li W 2008 Chin. Phys. B 17 1050
[14] Liu M H, Hu X W, Jiang Z H, Liu K F, Gu C L, Pan Y 2002 Acta Phys. Sin. 51 1317 (in Chinese) [刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣 2002 51 1317]
[15] Tang D L, Sun A P, Qiu X M 2002 Acta Phys. Sin. 51 1724 (in Chinese) [唐德礼, 孙爱萍, 邱孝明 2002 51 1724]
[16] Tang D L, Sun A P, Qiu X M, Chu P K 2003 IEEE Tran. Plasma Sci. 31 405
[17] Zhao Q, Liu S Z, Tong H H 2009 Plasma Technology and Its Applications (Beijing: National Defense Industry Press) p40 (in Chinese) [赵青, 刘述章, 童洪辉 2009 等离子体技术及应用(北京: 国防工业出版社)第40页]
[18] Yang H W, Chen R S 2007 Opt. Quantum Electron. 39 1245
[19] Jamison S P, Shen J L, Jones D R, Issac R C, Ersfeld B, Clark D, Jaroszynski D A 2003 J. Appl. Phys. 93 4334
[20] Kolner B H, Buckles R A, Conklin P M, Scott R P 2008 IEEE J. Sel. Top. Quantum Electron. 14 505
[21] Angus J R, Krasheninnikov S I, Smolyakov A I 2010 Phys. Plasmas 17 102115
[22] Weston V H 1967 Phys. Fluids 10 632
[23] Cheng G X, Liu L 2010 IEEE Tran. Plasma Sci. 38 3109
-
[1] Mitchell F H 1967 Proc. IEEE 55 619
[2] Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. AES-7 879
[3] Liu J F, Xi X L, Liu Y 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p442
[4] Kim M, Keidar M, Boyd I D 2008 IEEE Tran. Plasma Sci. 36 1198
[5] Liu J F, Xi X L, Wan G B, Wang L L 2011 IEEE Tran. Plasma Sci. 39 852
[6] Lan C H, Jiang Z H, Chen Z Q, Liu M H, Hu X W 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p913
[7] Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445
[8] Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301
[9] Zeng X J, Yu Z F, Bu S Q, Liu S, Ma P, Shi A H, Liang S C 2010 Acta Aerodyn. Sin. 28 645
[10] Kuo S P, Faith J 1997 Phys. Rev. E 56 2143
[11] Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 53 3464]
[12] Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 53 778]
[13] Hu Q L, Liu S B, Li W 2008 Chin. Phys. B 17 1050
[14] Liu M H, Hu X W, Jiang Z H, Liu K F, Gu C L, Pan Y 2002 Acta Phys. Sin. 51 1317 (in Chinese) [刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣 2002 51 1317]
[15] Tang D L, Sun A P, Qiu X M 2002 Acta Phys. Sin. 51 1724 (in Chinese) [唐德礼, 孙爱萍, 邱孝明 2002 51 1724]
[16] Tang D L, Sun A P, Qiu X M, Chu P K 2003 IEEE Tran. Plasma Sci. 31 405
[17] Zhao Q, Liu S Z, Tong H H 2009 Plasma Technology and Its Applications (Beijing: National Defense Industry Press) p40 (in Chinese) [赵青, 刘述章, 童洪辉 2009 等离子体技术及应用(北京: 国防工业出版社)第40页]
[18] Yang H W, Chen R S 2007 Opt. Quantum Electron. 39 1245
[19] Jamison S P, Shen J L, Jones D R, Issac R C, Ersfeld B, Clark D, Jaroszynski D A 2003 J. Appl. Phys. 93 4334
[20] Kolner B H, Buckles R A, Conklin P M, Scott R P 2008 IEEE J. Sel. Top. Quantum Electron. 14 505
[21] Angus J R, Krasheninnikov S I, Smolyakov A I 2010 Phys. Plasmas 17 102115
[22] Weston V H 1967 Phys. Fluids 10 632
[23] Cheng G X, Liu L 2010 IEEE Tran. Plasma Sci. 38 3109
Catalog
Metrics
- Abstract views: 10589
- PDF Downloads: 1421
- Cited By: 0