-
利用亥姆霍兹方程和场匹配法,推导出了被圆柱介质管包裹的均匀非磁化冷等离子体柱中各角向模的色散关系.数值计算并分析了角向对称模(m=0模)、非角向对称模(m0模)的色散特性以及在不同波频率下各模式的辐射特性.研究发现,在波频率小于等离子体频率pe条件下,当一定时,各模式的传播速度随着pe的增大逐渐接近光速;m=1角向模式属于端向辐射,其主瓣辐射方向在轴向,而且随着的增大,其主瓣宽度逐渐变小,且出现幅值极小的副瓣;对于m1模式,其主瓣辐射方向均与轴向存在一定夹角,既不属于端向辐射也不属于法向辐射,且随着的增大,其主瓣宽度逐渐变小;各个模式的传播功率随着的增大逐渐增大.The electromagnetic surface waves which propagate along a non-magnetized cold plasma column have a great value in the application of plasma antenna. In this paper, the dispersion properties, the transmission power distributions, and the radiation patterns for these electromagnetic surface waves which have lower frequencies than the electron plasma frequency are analyzed numerically. Based on Helmholtz equation, the specific expression of dispersion equation is derivedby the field matching method, then the exact values of complex axial wave vector kz under different wave frequencies are obtained by solving the transcendental dispersion relation. Using the specific value of kz obtained above, the exact expressions of transmission power profile in the plasma column and field profiles in the three regions, i.e., plasma, dielectric, and free space are derived, respectively. Finally, based on the complex form of electric conductivity that is derived from the Boltzmann-Vlasov equation with Krook term and the complex axial wave vector kz obtained above, the influence of the parameter pea/c on phase property, and the dependence of radiation pattern and transmission power profile on wave frequency of the non-magnetized cold plasma column in a cylindrical dielectric tube system are analyzed. The results show that the electron plasma frequency has a significant influence on the phase property, which is evidently confirmed by the fact that the propagation velocities of the three modes m=0, m=1 and m=2 are all near to the light speed when the value of parameter pea/c gradually increases. Meanwhile, through the investigation of the radiation patterns for the three modes, an important conclusion is that the radiation pattern has evident dependence on wave frequency. While the radiation direction of the main lobe is in the axial direction for the m=1 mode, the m1 modes each have an angle between the radiation direction of the main lobe and the axial direction, this crucial conclusion is in good agreement with the theoretical calculation results obtained from other researcher. Further, we find that with the increase of wave frequency, the angle between the main lobe radiation direction and the axial direction turns smaller for each of m=0 and m=2 modes, and the width of main lobe gradually narrows for each of all modes, and the amplitude of the first side lobe becomes notable for each of m=0 and m=2 modes and ignorable for the m=1 mode. Also, the transmission power increases as the wave frequency increases for each of all modes. These theoretical calculation results provide a detailed theoretical reference for the designing of plasma stealth and high-precision requirements of plasma antenna design, and giving a comprehensive optimization guidance for the modulation of plasma antenna.
-
Keywords:
- plasma /
- azimuthal mode /
- radiation pattern /
- dispersion relation
[1] Trivelpiece A W, Gould R W 1959J.Appl.Phys. 30 1784
[2] Alexeff I 1968Phys.Fluids 11 1591
[3] Kirichenko Y V, Lonin Y F, Onishchenko I N 2011Radioelectron.Commun.Syst. 54 613
[4] Kirichenko Y V, Lonin Y F, Onishchenko I N 2014Radioelectron.Commun.Syst. 57 474
[5] Kirichenko Y V, Lonin Y F, Onishchenko I N 2014J.Commun.Technol.Electron. 59 269
[6] Ye H Q, Gao M, Tang C J 2011IEEE Trans.Antennas Propag. 59 1497
[7] Wu K B, Hsu J Y 2012Phys.Plasmas 19 022111
[8] Jia G, Xiang N, Wang X, Huang Y, Lin Y 2016Phys.Plasmas 23 012504
[9] Kalaee M J, Katoh Y 2016Phys.Plasmas 23 072119
[10] Chen S Q 2001International Aviation 2001 10
[11] Lin M, Xu H J, Wei X L, Liang H, Zhang Y H 2015Acta Phys.Sin. 64 055201(in Chinese)[林敏, 徐浩军, 魏小龙, 梁华, 张艳华2015 64 055201]
[12] Chen F F 1991Plasma Phys.Controlled Fusion 33 339
[13] Zhao G W, Xu Y M, Chen C 2006Acta Phys.Sin. 55 3458(in Chinese)[赵国伟, 徐跃民, 陈诚2006 55 3458]
[14] Zhao G W, Wang Z J, Xu Y M, Liang Z W, Xu J 2007Acta Phys.Sin. 56 5304(in Chinese)[赵国伟, 王之江, 徐跃民, 梁志伟, 徐杰2007 56 5304]
-
[1] Trivelpiece A W, Gould R W 1959J.Appl.Phys. 30 1784
[2] Alexeff I 1968Phys.Fluids 11 1591
[3] Kirichenko Y V, Lonin Y F, Onishchenko I N 2011Radioelectron.Commun.Syst. 54 613
[4] Kirichenko Y V, Lonin Y F, Onishchenko I N 2014Radioelectron.Commun.Syst. 57 474
[5] Kirichenko Y V, Lonin Y F, Onishchenko I N 2014J.Commun.Technol.Electron. 59 269
[6] Ye H Q, Gao M, Tang C J 2011IEEE Trans.Antennas Propag. 59 1497
[7] Wu K B, Hsu J Y 2012Phys.Plasmas 19 022111
[8] Jia G, Xiang N, Wang X, Huang Y, Lin Y 2016Phys.Plasmas 23 012504
[9] Kalaee M J, Katoh Y 2016Phys.Plasmas 23 072119
[10] Chen S Q 2001International Aviation 2001 10
[11] Lin M, Xu H J, Wei X L, Liang H, Zhang Y H 2015Acta Phys.Sin. 64 055201(in Chinese)[林敏, 徐浩军, 魏小龙, 梁华, 张艳华2015 64 055201]
[12] Chen F F 1991Plasma Phys.Controlled Fusion 33 339
[13] Zhao G W, Xu Y M, Chen C 2006Acta Phys.Sin. 55 3458(in Chinese)[赵国伟, 徐跃民, 陈诚2006 55 3458]
[14] Zhao G W, Wang Z J, Xu Y M, Liang Z W, Xu J 2007Acta Phys.Sin. 56 5304(in Chinese)[赵国伟, 王之江, 徐跃民, 梁志伟, 徐杰2007 56 5304]
计量
- 文章访问数: 5901
- PDF下载量: 162
- 被引次数: 0