-
The Hartree-Fork (HF) method with LANL2DZ basis set is used to investigate the equilibrium structures, atomic charge distributions, the highest occupied molecular orbital (HOMO) energy levels, the lowest unoccupied molecular orbital (LUMO) energy levels, energy gaps, dipole moments, harmonic frequencies and infrared intensities of ZnSe under different external electric fields ranging from -0.025 to 0.040 a.u. The excitation energies, transition wavelengths and oscillator strengths under the same external electric fields are calculated by the time-dependent-HF method. The results show that the bond length and electric dipole moment are proved to be first decreasing, and then increasing with the variation of the external field; the total energy is found to decrease linearly with the variation of external field; but the HOMO energy and energy gap are proved to increase with the variation of external field. The harmonic frequency and LUMO energy are found to first increase, and then decrease, but the infrared intensities are proved to first decrease, and then increase. The external electric field has significant effect on the excitation properties of ZnSe molecule. The excited energies from ground state to the first nine excited states are found to increase, and the transition wavelengths are decreasing with the variation of the external field. Meanwhile, the strongest excited state becomes very weak, and the weak excited state becomes strongest by the external field. The excitation properties of ZnSe material can be changed with external electric field.
-
Keywords:
- ZnSe /
- external electric field /
- ground state /
- excitation properties
[1] Alivisatos A P 1996 Science 271 933
[2] Azpiroz J M, Ugalde J M, Infante I 2014 J. Chem. Theory Comput. 10 76
[3] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S 2005 Science 307 538
[4] Zrazhevskiy P, Gao X H 2013 Nat. Commun. 4 1619
[5] Medintz I L, Tetsuouyeda H, Goldman E R, Mattoussi H 2005 Nat. Mater. 4 435
[6] Liu W H, Howarth M, Greytak A B, Zheng Y, Nocera D G, Ting A Y, Bawendi M G 2008 J. Am. Chem. Soc. 130 1274
[7] Shao L J, Gao Y F, Yan F 2011 Sensors 11 11736
[8] Deya S C, Nathb S S, Bhattacherjeea R 2012 Micro Nanosystems 4 227
[9] Singh R, Bester G 2012 Phys. Rev. B 85 205405
[10] Matxain J M, Mercero J M, Fowler J E, Ugalde J M 2001 Phys. Rev. A 64 053201
[11] Nanavati S P, Sundararajan V, Mahamuni S, Kumar V, Ghaisas S V 2009 Phys. Rev. B 80 245417
[12] Sanville E, Burnin A, BelBruno J J 2006 J. Phys. Chem. A 110 2378
[13] Liu L, Wu Q S, Ding Y P, Liu H J 2005 Chin. Chem. Lett. 16 375
[14] Hwang C S, Cho I H 2005 Bull. Korean Chem. Soc. 26 1776
[15] Hu Z G, Tian Y T, Li X J 2013 Chin. Phys. Lett. 30 087801
[16] Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101
[17] Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113101
[18] Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 61 043104]
[19] Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 63 043101]
[20] Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102 (in Chinese) [王藩侯, 黄多辉, 杨俊升 2013 62 073102]
[21] Grozema F C, Telesca R, Joukman H T, Siebbeles L D A, Snijders J G 2001 J. Chem. Phys. 115 10014
[22] Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. Atom Mol. Phys. 20 169 (in Chinese) [朱正和, 傅依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子 20 169]
[23] Stevens W J, Krauss M, Basch H, Jasien P G 1992 Can. J. Chem. 70 612
[24] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: Van Nostrand Reinhold Company) p682
[25] Li J, Liu X Y, Zhu Z H, Sheng Y 2012 Chin. Phys. B 21 033101
-
[1] Alivisatos A P 1996 Science 271 933
[2] Azpiroz J M, Ugalde J M, Infante I 2014 J. Chem. Theory Comput. 10 76
[3] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S 2005 Science 307 538
[4] Zrazhevskiy P, Gao X H 2013 Nat. Commun. 4 1619
[5] Medintz I L, Tetsuouyeda H, Goldman E R, Mattoussi H 2005 Nat. Mater. 4 435
[6] Liu W H, Howarth M, Greytak A B, Zheng Y, Nocera D G, Ting A Y, Bawendi M G 2008 J. Am. Chem. Soc. 130 1274
[7] Shao L J, Gao Y F, Yan F 2011 Sensors 11 11736
[8] Deya S C, Nathb S S, Bhattacherjeea R 2012 Micro Nanosystems 4 227
[9] Singh R, Bester G 2012 Phys. Rev. B 85 205405
[10] Matxain J M, Mercero J M, Fowler J E, Ugalde J M 2001 Phys. Rev. A 64 053201
[11] Nanavati S P, Sundararajan V, Mahamuni S, Kumar V, Ghaisas S V 2009 Phys. Rev. B 80 245417
[12] Sanville E, Burnin A, BelBruno J J 2006 J. Phys. Chem. A 110 2378
[13] Liu L, Wu Q S, Ding Y P, Liu H J 2005 Chin. Chem. Lett. 16 375
[14] Hwang C S, Cho I H 2005 Bull. Korean Chem. Soc. 26 1776
[15] Hu Z G, Tian Y T, Li X J 2013 Chin. Phys. Lett. 30 087801
[16] Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101
[17] Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113101
[18] Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 61 043104]
[19] Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 63 043101]
[20] Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102 (in Chinese) [王藩侯, 黄多辉, 杨俊升 2013 62 073102]
[21] Grozema F C, Telesca R, Joukman H T, Siebbeles L D A, Snijders J G 2001 J. Chem. Phys. 115 10014
[22] Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. Atom Mol. Phys. 20 169 (in Chinese) [朱正和, 傅依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子 20 169]
[23] Stevens W J, Krauss M, Basch H, Jasien P G 1992 Can. J. Chem. 70 612
[24] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: Van Nostrand Reinhold Company) p682
[25] Li J, Liu X Y, Zhu Z H, Sheng Y 2012 Chin. Phys. B 21 033101
Catalog
Metrics
- Abstract views: 6429
- PDF Downloads: 375
- Cited By: 0