搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体中电磁波传输特性理论与实验研究

郑灵 赵青 罗先刚 马平 刘述章 黄成 邢晓俊 张春艳 陈旭霖

引用本文:
Citation:

等离子体中电磁波传输特性理论与实验研究

郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖

Theoretical and experimental studies of electromagnetic wave transmission in plasma

Zheng Ling, Zhao Qing, Luo Xian-Gang, Ma Ping, Liu Shu-Zhang, Huang Cheng, Xing Xiao-Jun, Zhang Chun-Yan, Chen Xu-Lin
PDF
导出引用
  • 本文对35 GHz和96 GHz电磁波在等离子体中的传输特性进行了理论与实验研究, 得到了电磁波衰减随等离子体密度、碰撞频率和电磁波频率的变化规律. 等离子体密度增加一个数量级时, 电磁波衰减增加一个数量级; 随着等离子体碰撞频率的增加, 电磁波衰减先增加后减小; 随着电磁波频率的增加, 衰减下降. 以激波管为实验平台进行了电磁波在等离子体中传输特性的实验研究, 实验结果和理论结果吻合较好. 理论和实验结果均表明, 提高电磁波频率是解决黑障问题的有效途径.
    The aircrafts, such as space shuttle, spaceship and so on, are facing the well-known blackout problem when they reentry into the atmosphere. The plasma sheath leads electromagnetic waves to attenuation, and the communications between the aircrafts and the ground to losing, and even completely interrupte, thereby resulting in the loss of radar targets and threatening the lives of the astronauts. Therefore, it is important to study the properties of the electromagnetic wave transmission in plasma. The characteristics of electromagnetic wave transmission in plasma are studied theoretically and experimentally in this paper. The variations of the electromagnetic wave attenuation with plasma density, collision frequency and electromagnetic wave frequency are obtained. The electromagnetic wave attenuation increasean an order of magnitude with plasma density increasing an order of magnitude. The electromagnetic wave attenuation first increases and then decreases with plasma collision frequency increasing, the electromagnetic wave attenuation decreases with the increase of electromagnetic wave frequency. The electromagnetic wave transmission properties in plasma are studied experimentally with shock tube, and the experimental results accord well with the theoretical results. The results show that increasing the electromagnetic wave frequency is an effective way to solve the reentry blackout problem.
    • 基金项目: 国家重点基础研究发展计划(973计划) (批准号: 2011CB301805), 国际合作项目(批准号: OS20122R0151), 国家高技术研究发展计划(863计划)(批准号: 2011AA7022016)和微细加工光学技术国家重点实验室基金(批准号: M160104012011E11)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB301805), the International Cooperation Projects (Grant No. OS2012R0151), the National High Technology Research and Development Program of China (Grant No. 2011AA7022016), and the Foundation of the State Key Laboratory of Optical Technologies for Microfabrication (Grant No. M160104012011E11).
    [1]

    Mitchell F H 1967 Proc. IEEE 55 619

    [2]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. AES-7 879

    [3]

    Liu J F, Xi X L, Liu Y 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p442

    [4]

    Kim M, Keidar M, Boyd I D 2008 IEEE Tran. Plasma Sci. 36 1198

    [5]

    Liu J F, Xi X L, Wan G B, Wang L L 2011 IEEE Tran. Plasma Sci. 39 852

    [6]

    Lan C H, Jiang Z H, Chen Z Q, Liu M H, Hu X W 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p913

    [7]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445

    [8]

    Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301

    [9]

    Zeng X J, Yu Z F, Bu S Q, Liu S, Ma P, Shi A H, Liang S C 2010 Acta Aerodyn. Sin. 28 645

    [10]

    Kuo S P, Faith J 1997 Phys. Rev. E 56 2143

    [11]

    Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 53 3464]

    [12]

    Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 53 778]

    [13]

    Hu Q L, Liu S B, Li W 2008 Chin. Phys. B 17 1050

    [14]

    Liu M H, Hu X W, Jiang Z H, Liu K F, Gu C L, Pan Y 2002 Acta Phys. Sin. 51 1317 (in Chinese) [刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣 2002 51 1317]

    [15]

    Tang D L, Sun A P, Qiu X M 2002 Acta Phys. Sin. 51 1724 (in Chinese) [唐德礼, 孙爱萍, 邱孝明 2002 51 1724]

    [16]

    Tang D L, Sun A P, Qiu X M, Chu P K 2003 IEEE Tran. Plasma Sci. 31 405

    [17]

    Zhao Q, Liu S Z, Tong H H 2009 Plasma Technology and Its Applications (Beijing: National Defense Industry Press) p40 (in Chinese) [赵青, 刘述章, 童洪辉 2009 等离子体技术及应用(北京: 国防工业出版社)第40页]

    [18]

    Yang H W, Chen R S 2007 Opt. Quantum Electron. 39 1245

    [19]

    Jamison S P, Shen J L, Jones D R, Issac R C, Ersfeld B, Clark D, Jaroszynski D A 2003 J. Appl. Phys. 93 4334

    [20]

    Kolner B H, Buckles R A, Conklin P M, Scott R P 2008 IEEE J. Sel. Top. Quantum Electron. 14 505

    [21]

    Angus J R, Krasheninnikov S I, Smolyakov A I 2010 Phys. Plasmas 17 102115

    [22]

    Weston V H 1967 Phys. Fluids 10 632

    [23]

    Cheng G X, Liu L 2010 IEEE Tran. Plasma Sci. 38 3109

  • [1]

    Mitchell F H 1967 Proc. IEEE 55 619

    [2]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. AES-7 879

    [3]

    Liu J F, Xi X L, Liu Y 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p442

    [4]

    Kim M, Keidar M, Boyd I D 2008 IEEE Tran. Plasma Sci. 36 1198

    [5]

    Liu J F, Xi X L, Wan G B, Wang L L 2011 IEEE Tran. Plasma Sci. 39 852

    [6]

    Lan C H, Jiang Z H, Chen Z Q, Liu M H, Hu X W 2008 8th International Symposium on Antennas, Propagation and EM Theory Kunming, China, November 2-5, 2008 p913

    [7]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445

    [8]

    Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301

    [9]

    Zeng X J, Yu Z F, Bu S Q, Liu S, Ma P, Shi A H, Liang S C 2010 Acta Aerodyn. Sin. 28 645

    [10]

    Kuo S P, Faith J 1997 Phys. Rev. E 56 2143

    [11]

    Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 53 3464]

    [12]

    Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 53 778]

    [13]

    Hu Q L, Liu S B, Li W 2008 Chin. Phys. B 17 1050

    [14]

    Liu M H, Hu X W, Jiang Z H, Liu K F, Gu C L, Pan Y 2002 Acta Phys. Sin. 51 1317 (in Chinese) [刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣 2002 51 1317]

    [15]

    Tang D L, Sun A P, Qiu X M 2002 Acta Phys. Sin. 51 1724 (in Chinese) [唐德礼, 孙爱萍, 邱孝明 2002 51 1724]

    [16]

    Tang D L, Sun A P, Qiu X M, Chu P K 2003 IEEE Tran. Plasma Sci. 31 405

    [17]

    Zhao Q, Liu S Z, Tong H H 2009 Plasma Technology and Its Applications (Beijing: National Defense Industry Press) p40 (in Chinese) [赵青, 刘述章, 童洪辉 2009 等离子体技术及应用(北京: 国防工业出版社)第40页]

    [18]

    Yang H W, Chen R S 2007 Opt. Quantum Electron. 39 1245

    [19]

    Jamison S P, Shen J L, Jones D R, Issac R C, Ersfeld B, Clark D, Jaroszynski D A 2003 J. Appl. Phys. 93 4334

    [20]

    Kolner B H, Buckles R A, Conklin P M, Scott R P 2008 IEEE J. Sel. Top. Quantum Electron. 14 505

    [21]

    Angus J R, Krasheninnikov S I, Smolyakov A I 2010 Phys. Plasmas 17 102115

    [22]

    Weston V H 1967 Phys. Fluids 10 632

    [23]

    Cheng G X, Liu L 2010 IEEE Tran. Plasma Sci. 38 3109

  • [1] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用.  , 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] 杨雨森, 王林, 苟德梽, 唐正明. 等离子体-光子晶体阵列结构波导模型的电磁特性研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241300
    [3] 杨春林. 等离子体中散斑光场的传输特性.  , 2018, 67(8): 085201. doi: 10.7498/aps.67.20171795
    [4] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究.  , 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [5] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟.  , 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [6] 韩祥临, 陈贤峰, 莫嘉琪. 一类量子等离子体类孤波的近似解析解.  , 2014, 63(3): 030202. doi: 10.7498/aps.63.030202
    [7] 宋玮, 邵浩, 张治强, 黄惠军, 李佳伟, 王康懿, 景洪, 刘英君, 崔新红. 射频击穿等离子体对高功率微波传输特性的影响.  , 2014, 63(6): 064101. doi: 10.7498/aps.63.064101
    [8] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究.  , 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [9] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析.  , 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [10] 周先春, 林万涛, 林一骅, 莫嘉琪. 大气非均匀量子等离子体孤波解.  , 2012, 61(24): 240202. doi: 10.7498/aps.61.240202
    [11] 郑灵, 赵青, 刘述章, 邢晓俊. 太赫兹波在非磁化等离子体中的传输特性研究.  , 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [12] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状.  , 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [13] 莫嘉琪. 一类非线性尘埃等离子体孤波解.  , 2011, 60(3): 030203. doi: 10.7498/aps.60.030203
    [14] 马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫. 毫米波在等离子体中的衰减特性研究.  , 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [15] 葛琳, 季沛勇. 等离子体波背景下的光子Berry相位.  , 2009, 58(1): 347-353. doi: 10.7498/aps.58.347
    [16] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析.  , 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [17] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用.  , 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [18] 杨宏伟, 陈如山, 张 云. 等离子体的SO-FDTD算法和对电磁波反射系数的计算分析.  , 2006, 55(7): 3464-3469. doi: 10.7498/aps.55.3464
    [19] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析.  , 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [20] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较.  , 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
计量
  • 文章访问数:  10559
  • PDF下载量:  1419
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-19
  • 修回日期:  2012-01-04
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map