-
Based on the plane wave method (PWPP) of densiy functional theory (DFT) we model the N, Fe, La three elements co-doped anatase TiO2 crystal structure and calculate its band structure and density of states with Material Studio. By the sol-gel method, the intrinsic anatase TiO2 and the anatase TiO2 with N, Fe, La three elements co-doping are prepared and investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results indicate that the changes of the N, Fe, La co-doped TiO2 lattice volume and its bond length will result in a decline of the crystal symmetry and the effective separation of the electron-hole pair. Impurity level appearing at the bottom of the conduction band and at the top of valence band leads to the decrease of the TiO2 forbidden band width(1.78 eV to 1.35 eV, reduced by 25%), the red shift of light absorption edge, the increase of density of states as well as, the improve ment of electron transition probability and the photocatalytic efficiency of TiO2. Ion doping makes the particles in doped TiO2 become smaller, i.e. the size of particles in TiO2>N/Fe_TiO2>N/Fe/La_TiO2, the emission peak of the N/Fe/La: TiO2 is 425 nm and its energy gap is smaller than that of the intrinsic TiO2. The measured N/Fe/La: TiO2 photocatalytic ability is stronger than the N/Fe: TiO2, the origin can be due to the increasing number of the electronic states and the impurity energy levels.
-
Keywords:
- TiO2 /
- doping /
- first principle /
- sol-gel
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[3] Perdew J P, Zunger A 1981 Phy. Rev. B 23 5048
[4] Choi W, Termin A, Hoffmann M R 1994 J. Chem. Phys. 98 13669.
[5] Asahi R, Morikawa T, Ohwakl T 2001 Science 293 269.
[6] Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 59 4930]
[7] Li C, Hou Q Y, Zhang Z Z, Zhang B 2012 Acta Phys. Sin. 61 077102 (in Chinese) [李聪, 侯清玉, 张振铎, 张冰 2012 61 077102]
[8] Li W, Wei S H, Duan X M 2014 Chin. Phys. B 23 027305
[9] Yang Y, Feng Q, Wang W H, Wang Y 2013 J. Semicond. Tech. Sci. 34 073004
[10] Hou X G, Huang M D, Wu X L, Liu A D 2009 Sci. China Technol. Sc. 52 838
[11] Zahid A, Iftikhar A, Banaras K, Imad K 2013 Chin. Phys. Lett. 30 047504
[12] Hebenstreit E L, Hebenstreit W, Diebold U 2000 Surface Science 461 87
[13] Zhang X J, Zhang G F, Jin H X, Zhu L D 2013 Acta Phys. Sin. 62 017102 (in Chinese) [张学军, 张光富, 金辉霞, 朱良迪, 柳清菊 2013 62 017102]
[14] Pham T D, Lee B K 2014 Appl. Surf. Sci. 296 15
[15] Lee J H, Hevia D F, Selloni A 2013 Phys. Rev. Lett. 110 016101
[16] Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71
[17] Liu S Y, Tang W H, Feng Q G, Li J Z, Sun J H. 2010 J. Inorg. Mater. 25 921
[18] Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101
[19] Gao G Y, Yao K L, Liu Z L 2006 Phys. Lett. A 359 523
[20] Gao G Y, Yao K L, Liu Z L, Zhang J, Li X L, Zhang J Q, Liu N 2007 J. Magn. Magn. Mater. 313 210
[21] Sun T 2012 M. S. Thesis (Xi'an: NorthwestUniversity) (in Chinese) [孙涛2012 硕士学位论文(西安: 西北大学)]
[22] Liu L Y, Wang R Z, Zhu M K, Hou Y D 2013 Chin. Phys. B 22 036401
[23] Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801
[24] Liu S Y, Tang W H, Feng Q G 2010 J. Inorg. Mater 25 921.
[25] Zhang Z H, Yu Y J, Wang P 2012 Acs. Appl. Mater. Inter. 4 990
[26] Zhao J G, Zhang W Y, Ma Z W, Xie E Q, Zhao A K, Liu Z J 2011 Chin. Phys. B 20 087701
[27] Ding P, Liu F M, Zhou C Q, Zhou W W, Zhang H, Cai L G, Zeng L G 2010 Chin. Phys. B 19 118102
[28] Guo W X, Zhang F, Lin C J 2012 Adv. Mater. 24 4761
[29] Liu B T, Huang Y J, Wen Y 2012 J Mater. Chem. A 22 7484
[30] Palmas S, Pozzo A D, Delogu F 2012 J. Power Sources 204 265
-
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[3] Perdew J P, Zunger A 1981 Phy. Rev. B 23 5048
[4] Choi W, Termin A, Hoffmann M R 1994 J. Chem. Phys. 98 13669.
[5] Asahi R, Morikawa T, Ohwakl T 2001 Science 293 269.
[6] Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 59 4930]
[7] Li C, Hou Q Y, Zhang Z Z, Zhang B 2012 Acta Phys. Sin. 61 077102 (in Chinese) [李聪, 侯清玉, 张振铎, 张冰 2012 61 077102]
[8] Li W, Wei S H, Duan X M 2014 Chin. Phys. B 23 027305
[9] Yang Y, Feng Q, Wang W H, Wang Y 2013 J. Semicond. Tech. Sci. 34 073004
[10] Hou X G, Huang M D, Wu X L, Liu A D 2009 Sci. China Technol. Sc. 52 838
[11] Zahid A, Iftikhar A, Banaras K, Imad K 2013 Chin. Phys. Lett. 30 047504
[12] Hebenstreit E L, Hebenstreit W, Diebold U 2000 Surface Science 461 87
[13] Zhang X J, Zhang G F, Jin H X, Zhu L D 2013 Acta Phys. Sin. 62 017102 (in Chinese) [张学军, 张光富, 金辉霞, 朱良迪, 柳清菊 2013 62 017102]
[14] Pham T D, Lee B K 2014 Appl. Surf. Sci. 296 15
[15] Lee J H, Hevia D F, Selloni A 2013 Phys. Rev. Lett. 110 016101
[16] Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71
[17] Liu S Y, Tang W H, Feng Q G, Li J Z, Sun J H. 2010 J. Inorg. Mater. 25 921
[18] Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101
[19] Gao G Y, Yao K L, Liu Z L 2006 Phys. Lett. A 359 523
[20] Gao G Y, Yao K L, Liu Z L, Zhang J, Li X L, Zhang J Q, Liu N 2007 J. Magn. Magn. Mater. 313 210
[21] Sun T 2012 M. S. Thesis (Xi'an: NorthwestUniversity) (in Chinese) [孙涛2012 硕士学位论文(西安: 西北大学)]
[22] Liu L Y, Wang R Z, Zhu M K, Hou Y D 2013 Chin. Phys. B 22 036401
[23] Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801
[24] Liu S Y, Tang W H, Feng Q G 2010 J. Inorg. Mater 25 921.
[25] Zhang Z H, Yu Y J, Wang P 2012 Acs. Appl. Mater. Inter. 4 990
[26] Zhao J G, Zhang W Y, Ma Z W, Xie E Q, Zhao A K, Liu Z J 2011 Chin. Phys. B 20 087701
[27] Ding P, Liu F M, Zhou C Q, Zhou W W, Zhang H, Cai L G, Zeng L G 2010 Chin. Phys. B 19 118102
[28] Guo W X, Zhang F, Lin C J 2012 Adv. Mater. 24 4761
[29] Liu B T, Huang Y J, Wen Y 2012 J Mater. Chem. A 22 7484
[30] Palmas S, Pozzo A D, Delogu F 2012 J. Power Sources 204 265
Catalog
Metrics
- Abstract views: 6636
- PDF Downloads: 1025
- Cited By: 0