-
本文运用第一性原理的计算方法, 以C/TM和N/TM共掺杂(碳与过渡金属共掺杂和氮与过渡金属共掺杂)TiO2为例, 分别计算了它们共掺杂TiO2的束缚能、能带结构和态密度等, 通过对双掺杂结构的束缚能计算, 发现非金属和金属杂质有团聚成键的趋势, 其正的束缚能说明了掺杂原子与周围的原子成键, 因成键作用减少的体系能量高于因几何畸变带来的应力能. 在对N/V和C/Cr共掺杂能带结构和分子成键的详细分析中, 发现非金属和金属共掺杂TiO2, 要使掺杂后TiO2的光吸收边红移较大, 光催化性能较好, 就要符合金属和非金属共掺杂协同机制, 即 掺杂后在导带底下方和价带顶上方分别出现由金属3d和非金属2p态提供的杂质能级.We present a first-principles calculation study of matal and nonmetal codoped anatase TiO2. We mainly investigate C/TM and N/TM (carbon and metal codoped, nitrogen and metal codoped) codoped TiO2, are calculate their bound energies, energy band structures and densities of states. We find that the metal and the nonmetal impurities have an aggregate tendenty by calculating the bound energy of codoping structure. Positive bound energy show that the doping atom and the peripheral atom will combine into a bond, the boding-effect-produced system energy is higher than the geometric-distortion-effect produced stress energy. We analyze the energy band structure and boding of N/V and C/Cr --codoped TiO2, and further find that if we want to extend TiO2 light absorb edge and improve TiO2 photocatalysis properties by metal and nonmetal codoped TiO2, we should make codoping by the codoped joint method, namely, below the conduction band and on the top of valence band can arise impurity energy levels contributed by metal 3d and nonmetal 2p orbits respectively
-
Keywords:
- titanium dioxide /
- codoped /
- energy band structure /
- density of state
[1] Yan M F, Rhodes W W, edited by Leamy H J, Pike G E, Seager C H 1981 North-Holland New York
[2] Reintjes J, Schultz M B 1968 J. Appl. Phys. 39 5254
[3] Goodenough J B, Longo J M 1970 Springer-Verlag (Berlin)
[4] Byrne J A, Eggins B R, Brown N M D, 1998 Appl. Catal. B 17 25
[5] Wang P, Grätzel M 2003 Nat. Mater. 21 402
[6] Ding Y W, Fan C Z 2001 Mod. Chem. Indu. 21 18 (in Chinese)[丁延伟, 范崇政 2001 现代化工 21 18]
[7] Fujishima A, Honda K 1972 Nature 238 37
[8] Wu T, Liu G, Zhao J 1998 J. Phys. Chem. B 102 5845
[9] Sato S 1986 Chem. Phys. Lett. 123 126
[10] Khan S U M 2002 Science 297 2243
[11] Xie Y B, Yuan C W, Li X Z 2005 Colloids. Surf. A 252 87
[12] Umebayashi T, Yamaki T, Tanaka S 2003 Chem. Lett. 32 330
[13] Yang Y, Li X J, Chen J T 2004 J. Photochem. and Photobiol. 163 517
[14] ChoiW, Termin A, HoffmannMR 1994 J. Phys. Chem. 98 13669
[15] Jeffrey C S, Chen C H 2004 J. Photochem. and Photobiol. 163 509
[16] Osorio-Guill′en J, Lany S, Zunger A 2008 Phys. Rev. Lett. 100 036601
[17] Hideki K, Akihiko K 2002 J. Phys. Chem. B 106 5029
[18] Yuan Z H, Jia J H, Zhang L D 2002 Mater. Chem. Phys. 73 323
[19] Luo H M, Takata T, Lee Y G 2004 Chem. Mater. 16 846
[20] Maeda K, Shimodaira Y, Lee B 2007 J. Phys. Chem. C 111 18264
[21] Teruhisa O, Toshiki T, Maki T 2004 Catal. Lett. 98 255
[22] Li J G, Yang X J, Ishigaki T 2006 J. Phys. Chem. B 110 14611
[23] Zhao W, Ma W H, Zhao J C 2004 J. A. Chem. Soc. 126 4782
[24] Ozaki H, Iwamoto S, Inoue M 2007 J. Phys. Chem. C 111 17061
[25] Conn′etable1 D, Thomas O 2009 Phys. Rev. B 79 094101
[26] Savini G, Ferrari A C, Feliciano G 2010 Phys. Rev. Lett. 105 037002
[27] Burdett J K, Hughbanks T, Miller G J 1987 J. Am. Chem. Soc. 109 3639
[28] Coey J M D 2006 Curr. Opin. Solid State Mater. Sci. 10 83
[29] Xu L, Tang C Q, Ma X G, Tang D H, Dai L 2007 Acta. Phys. Sin. 56 1048 (in Chinese)[徐凌, 唐超群, 马新国, 唐代海, 戴磊 2007 56 1048]
[30] Xu L, Tang C Q, Qian J 2010 Acta. Phys. Sin. 59 2721 (in Chinese)[徐凌, 唐超群, 钱俊 2010 59 2721]
-
[1] Yan M F, Rhodes W W, edited by Leamy H J, Pike G E, Seager C H 1981 North-Holland New York
[2] Reintjes J, Schultz M B 1968 J. Appl. Phys. 39 5254
[3] Goodenough J B, Longo J M 1970 Springer-Verlag (Berlin)
[4] Byrne J A, Eggins B R, Brown N M D, 1998 Appl. Catal. B 17 25
[5] Wang P, Grätzel M 2003 Nat. Mater. 21 402
[6] Ding Y W, Fan C Z 2001 Mod. Chem. Indu. 21 18 (in Chinese)[丁延伟, 范崇政 2001 现代化工 21 18]
[7] Fujishima A, Honda K 1972 Nature 238 37
[8] Wu T, Liu G, Zhao J 1998 J. Phys. Chem. B 102 5845
[9] Sato S 1986 Chem. Phys. Lett. 123 126
[10] Khan S U M 2002 Science 297 2243
[11] Xie Y B, Yuan C W, Li X Z 2005 Colloids. Surf. A 252 87
[12] Umebayashi T, Yamaki T, Tanaka S 2003 Chem. Lett. 32 330
[13] Yang Y, Li X J, Chen J T 2004 J. Photochem. and Photobiol. 163 517
[14] ChoiW, Termin A, HoffmannMR 1994 J. Phys. Chem. 98 13669
[15] Jeffrey C S, Chen C H 2004 J. Photochem. and Photobiol. 163 509
[16] Osorio-Guill′en J, Lany S, Zunger A 2008 Phys. Rev. Lett. 100 036601
[17] Hideki K, Akihiko K 2002 J. Phys. Chem. B 106 5029
[18] Yuan Z H, Jia J H, Zhang L D 2002 Mater. Chem. Phys. 73 323
[19] Luo H M, Takata T, Lee Y G 2004 Chem. Mater. 16 846
[20] Maeda K, Shimodaira Y, Lee B 2007 J. Phys. Chem. C 111 18264
[21] Teruhisa O, Toshiki T, Maki T 2004 Catal. Lett. 98 255
[22] Li J G, Yang X J, Ishigaki T 2006 J. Phys. Chem. B 110 14611
[23] Zhao W, Ma W H, Zhao J C 2004 J. A. Chem. Soc. 126 4782
[24] Ozaki H, Iwamoto S, Inoue M 2007 J. Phys. Chem. C 111 17061
[25] Conn′etable1 D, Thomas O 2009 Phys. Rev. B 79 094101
[26] Savini G, Ferrari A C, Feliciano G 2010 Phys. Rev. Lett. 105 037002
[27] Burdett J K, Hughbanks T, Miller G J 1987 J. Am. Chem. Soc. 109 3639
[28] Coey J M D 2006 Curr. Opin. Solid State Mater. Sci. 10 83
[29] Xu L, Tang C Q, Ma X G, Tang D H, Dai L 2007 Acta. Phys. Sin. 56 1048 (in Chinese)[徐凌, 唐超群, 马新国, 唐代海, 戴磊 2007 56 1048]
[30] Xu L, Tang C Q, Qian J 2010 Acta. Phys. Sin. 59 2721 (in Chinese)[徐凌, 唐超群, 钱俊 2010 59 2721]
计量
- 文章访问数: 8932
- PDF下载量: 1080
- 被引次数: 0