搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究

嘉明珍 王红艳 陈元正 马存良 王辉

引用本文:
Citation:

Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究

嘉明珍, 王红艳, 陈元正, 马存良, 王辉

First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4

Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui
PDF
导出引用
  • 硅酸锰锂作为锂离子电池正极材料因具有高的理论电容量而一直备受关注, 但其较低的导电率和较差的循环性能阻碍了进一步的发展. 采用第一性原理广义梯度近似GGA+U的方法, 研究了Al, Fe, Mg掺杂Li2MnSiO4的电子结构、 脱嵌锂电压和导电性. 研究发现, Al 掺杂的Li2Mn0.5Al0.5SiO4结构中载流子的数目增加, 电子自旋向上和向下的态密度均穿过费米能级, 呈现金属特性, 提高了体系的导电率. 脱锂LixMnSiO4 (x=1, 0)结构中, 通过计算一次脱锂相结构的形成能得到Al掺杂的一次脱锂结构最稳定, 并且Al掺杂的脱锂相结构体积变化小, 有利于材料循环性能的提高, 同时第一个锂离子脱嵌电压与未掺杂时(4.2 V)相比降低到2.7 V. Fe掺杂降低了Li2MnSiO4的带隙, 第一个锂离子脱嵌电压降低到3.7 V. 研究表明, Al的掺杂效果优于Fe和Mg, 更利于硅酸锰锂电化学性质的提高.
    Li2MnSiO4 is one of the potential cathode materials for lithium batteries due to its high capacities, but the poor conductivity hinders its further development. The cycling performance and electrochemical property of Li2MnSiO4 cathode material can be improved by doping metal cation. Twelve structures LixMn1-yMySiO4 (x=2, 1, 0; y=0.5, 1; M= Al, Fe, Mg) by doping Al, Fe and Mg are constructed in this paper, and their structures, electronic properties and delithiation process are studied by using the density functional theory of first principles within the GGA+U scheme. The best doping site and delithiated structure are found by comparing their energies. The results show that Al-doping is the best way to improve the conductivity and cyclability of the cathode material Li2MnSiO4. The pure Li2MnSiO4 has a low conductivity because of its large band gap (3.41 eV), while Al-doping Li2MnSiO4 crystal has metallic characteristics due to its electron densities of state with up-spin and down-spin cross through the Fermi level. The band gap is also reduced when it is Fe-doped, which improves the conductivity of Li2MnSiO4. Among the delithiated structures LixMnSiO4 (x=1, 0), Al-doping enhances the structural stability because of the lowest formation energy and its cyclability is improved by reducing the volume change. Within the lithium ion extraction from the Li2MnSiO4 and Li2Mn0.5M0.5SiO4 (M=Al, Fe, Mg), the Mn-O and M-O bonding have much more ionic features, while the covalent bonding feature between Si and O is almost unchanged. And the fully delithiated MnSiO4 and Mn0.5M0.5SiO4 show semic-metallic properties depending on the density of states of configuration. The delithiated voltages for the first Li extraction process decrease when Al and Fe are doped. Therefore the Al-doping in the Li2MnSiO4 is expected to be an effective way to improve the cycling performance and electrochemical property for Li-ion battery cathode material.
    • 基金项目: 国家自然科学基金(批准号: 11174237, 11404268)、四川省应用基础项目(批准号: 2013JY0035)和中央高校基本科研业务费专项资金(批准号: 2682014ZT30)资助的课题.
    • Funds: Project supported by the National Science Foundation, China (Grant Nos. 11174237, 11404268), the Applied Science and Technology Project of Sichuan Province, China (Grant No. 2013JY0035), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2682014ZT30).
    [1]

    Kalantarian M M, Asgari S, Mustarelli P 2014 J. Mater. Chem. A 2 107

    [2]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 63 048202]

    [3]

    Zhang P 2014 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese) [张鹏 2014 博士学位论文 (厦门: 厦门大学)]

    [4]

    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156

    [5]

    Zhong G H, Li Y L, Yan P, Liu Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693

    [6]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 Comput. Mater. Sci. 44 1243

    [7]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292

    [8]

    Nishimura S I, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A 2008 J. Am. Chem. Soc. 130 13212

    [9]

    Sirisopanaporn C, Masquelier C, Bruce P G, Armstrong A R, Dominko R 2011 J. Am. Chem. Soc. 133 1263

    [10]

    Gong Z L, Yang Y 2011 Energy Environ. Sci. 4 3223

    [11]

    Ru Q, Hu S J, Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese) [汝强, 胡社军, 赵灵智 2011 60 036301]

    [12]

    Huang X B, Li X, Wang H Y, Pan Z L, Qu M Z, Yu Z L 2010 Electrochim. Acta 55 7362

    [13]

    Aravindan V, Karthikeyan K, Kang K S, Yoon W S, Kim W S, Lee Y S 2011 J. Mater. Chem. 21 2470

    [14]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Y 2012 Physics 41 95 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英 2012 物理 41 95]

    [15]

    Zhang Z, Ma S S, Kou D, Liu X Q 2013 Battery 43 357 (in Chinese) [张峥, 马慎思, 寇丹, 刘兴泉 2013 电池 43 357]

    [16]

    Ma S S 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [马慎思 2013 硕士学位论文 (成都: 电子科技大学)]

    [17]

    Peng W, Yue M, Liang Q, Hu S J, Hou X H 2011 Acta Phys. Sin. 60 038202 (in Chinese) [彭薇, 岳敏, 梁奇, 胡社军, 侯贤华 2011 60 038202]

    [18]

    Rangappa D, Murukanahally K D, Tomai T, Unemoto A, Honma I 2012 Nano Lett. 12 1146

    [19]

    Moriya M, Miyahara M, Hokazono M, Sasaki H, Nemoto A, Katayama S, Akimoto Y, Hirano S 2014 J. Electrochem. Soc. 161 A97

    [20]

    Deng C, Zhang S, Yang S Y 2009 J. Alloys Compd. 487 L18

    [21]

    Gong Z L, Li Y X, Yang Y 2006 Electrochem. Solid-State Lett. 9 A542

    [22]

    Liu W G, Xu Y H, Yang R, Ren B 2010 Hot Working Technol. 39 21 (in Chinese) [刘文刚, 许云华, 杨蓉, 任冰 2010 热加工工艺 39 21]

    [23]

    Choi S, Kim S J, Yun Y J, Lee S S, Choi S Y, Jung H K 2013 Mater. Lett. 105 113

    [24]

    Deng C, Zhang S, Wu Y X, Zhao B D 2014 J. Electroanal. Chem. 719 150

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [28]

    Dominko R, Bele M, Gaberšcek M, Meden A, Remškar M, Jamnik J 2006 Electrochem. Commun. 8 217

    [29]

    Kuganathan N, Islam M S 2009 Chem. Mater. 21 5196

    [30]

    Zhang S, Lin Z, Ji L W, Li Y, Xu G J, Xue L G, Li S, Lu Y, Toprakci O, Zhang X W 2012 J. Mater. Chem. 22 14661

    [31]

    Belharouak I, Abouimrane A, Amine K 2009 J. Phys. Chem. C 113 20733

    [32]

    Lee H, Park S D, Moon J, Lee H, Cho K, Cho M, Kim S Y 2014 Chem. Mater. 26 3896

    [33]

    Chen R Y, Heinzmann R, Mangold S, Chakravadhanula K, Hahn H, Indris S 2013 J. Phys. Chem. C 117 884

    [34]

    Longo R C, Xiong K, KC S, Cho K 2014 Electrochim. Acta 121 434

    [35]

    Zhang P, Zheng Y, Yu S, Wu S Q, Wen Y H, Zhu Z Z, Yang Y 2013 Electrochim. Acta 111 172

    [36]

    Aydinol M K, Kohan A F, Ceder G 1997 Phys. Rev. B 56 1354

    [37]

    Osnis A, Kosa M, Aurbach D, Major D T 2013 J. Phys. Chem. C 117 17919

    [38]

    Shao B, Abe Y, Taniguchi I 2013 Powder Technol. 235 1

  • [1]

    Kalantarian M M, Asgari S, Mustarelli P 2014 J. Mater. Chem. A 2 107

    [2]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 63 048202]

    [3]

    Zhang P 2014 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese) [张鹏 2014 博士学位论文 (厦门: 厦门大学)]

    [4]

    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156

    [5]

    Zhong G H, Li Y L, Yan P, Liu Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693

    [6]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 Comput. Mater. Sci. 44 1243

    [7]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292

    [8]

    Nishimura S I, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A 2008 J. Am. Chem. Soc. 130 13212

    [9]

    Sirisopanaporn C, Masquelier C, Bruce P G, Armstrong A R, Dominko R 2011 J. Am. Chem. Soc. 133 1263

    [10]

    Gong Z L, Yang Y 2011 Energy Environ. Sci. 4 3223

    [11]

    Ru Q, Hu S J, Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese) [汝强, 胡社军, 赵灵智 2011 60 036301]

    [12]

    Huang X B, Li X, Wang H Y, Pan Z L, Qu M Z, Yu Z L 2010 Electrochim. Acta 55 7362

    [13]

    Aravindan V, Karthikeyan K, Kang K S, Yoon W S, Kim W S, Lee Y S 2011 J. Mater. Chem. 21 2470

    [14]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Y 2012 Physics 41 95 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英 2012 物理 41 95]

    [15]

    Zhang Z, Ma S S, Kou D, Liu X Q 2013 Battery 43 357 (in Chinese) [张峥, 马慎思, 寇丹, 刘兴泉 2013 电池 43 357]

    [16]

    Ma S S 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [马慎思 2013 硕士学位论文 (成都: 电子科技大学)]

    [17]

    Peng W, Yue M, Liang Q, Hu S J, Hou X H 2011 Acta Phys. Sin. 60 038202 (in Chinese) [彭薇, 岳敏, 梁奇, 胡社军, 侯贤华 2011 60 038202]

    [18]

    Rangappa D, Murukanahally K D, Tomai T, Unemoto A, Honma I 2012 Nano Lett. 12 1146

    [19]

    Moriya M, Miyahara M, Hokazono M, Sasaki H, Nemoto A, Katayama S, Akimoto Y, Hirano S 2014 J. Electrochem. Soc. 161 A97

    [20]

    Deng C, Zhang S, Yang S Y 2009 J. Alloys Compd. 487 L18

    [21]

    Gong Z L, Li Y X, Yang Y 2006 Electrochem. Solid-State Lett. 9 A542

    [22]

    Liu W G, Xu Y H, Yang R, Ren B 2010 Hot Working Technol. 39 21 (in Chinese) [刘文刚, 许云华, 杨蓉, 任冰 2010 热加工工艺 39 21]

    [23]

    Choi S, Kim S J, Yun Y J, Lee S S, Choi S Y, Jung H K 2013 Mater. Lett. 105 113

    [24]

    Deng C, Zhang S, Wu Y X, Zhao B D 2014 J. Electroanal. Chem. 719 150

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [28]

    Dominko R, Bele M, Gaberšcek M, Meden A, Remškar M, Jamnik J 2006 Electrochem. Commun. 8 217

    [29]

    Kuganathan N, Islam M S 2009 Chem. Mater. 21 5196

    [30]

    Zhang S, Lin Z, Ji L W, Li Y, Xu G J, Xue L G, Li S, Lu Y, Toprakci O, Zhang X W 2012 J. Mater. Chem. 22 14661

    [31]

    Belharouak I, Abouimrane A, Amine K 2009 J. Phys. Chem. C 113 20733

    [32]

    Lee H, Park S D, Moon J, Lee H, Cho K, Cho M, Kim S Y 2014 Chem. Mater. 26 3896

    [33]

    Chen R Y, Heinzmann R, Mangold S, Chakravadhanula K, Hahn H, Indris S 2013 J. Phys. Chem. C 117 884

    [34]

    Longo R C, Xiong K, KC S, Cho K 2014 Electrochim. Acta 121 434

    [35]

    Zhang P, Zheng Y, Yu S, Wu S Q, Wen Y H, Zhu Z Z, Yang Y 2013 Electrochim. Acta 111 172

    [36]

    Aydinol M K, Kohan A F, Ceder G 1997 Phys. Rev. B 56 1354

    [37]

    Osnis A, Kosa M, Aurbach D, Major D T 2013 J. Phys. Chem. C 117 17919

    [38]

    Shao B, Abe Y, Taniguchi I 2013 Powder Technol. 235 1

  • [1] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [2] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [3] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质.  , 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [4] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究.  , 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [5] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究.  , 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [6] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究.  , 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [7] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [8] 王永贞, 徐朝鹏, 张文秀, 张欣, 王倩, 张磊. Ge掺杂对InI导电性能影响的第一性原理研究.  , 2014, 63(23): 237101. doi: 10.7498/aps.63.237101
    [9] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究.  , 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [10] 刘玮洁, 孙正昊, 黄宇欣, 冷静, 崔海宁. 不同价态稀土元素Yb掺杂ZnO的电子结构和光学性质.  , 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [11] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究.  , 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [12] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [13] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质.  , 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [14] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究.  , 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [15] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究.  , 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [16] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究.  , 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [17] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质.  , 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [18] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究.  , 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [19] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质.  , 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [20] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究.  , 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
计量
  • 文章访问数:  7197
  • PDF下载量:  544
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-28
  • 修回日期:  2014-11-30
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map