-
基于第一性原理的自旋极化密度泛函理论分别研究了过渡金属V, Cr, Mn掺杂单层MoS2的电子结构、 磁性和稳定性. 结果表明: V和Mn单掺杂均能产生一定的磁矩, 而磁矩主要集中在掺杂的过渡金属原子上, Cr单掺杂时体系不显示磁性. 进一步讨论双原子掺杂MoS2 体系中掺杂原子之间的磁耦合作用发现, Mn掺杂的体系在室温下显示出稳定的铁磁性, 而V掺杂则表现出非自旋极化基态. 形成能的计算表明Mn掺杂的MoS2体系相对V和Cr 掺杂结构更稳定. 由于Mn掺杂的MoS2 不仅在室温下可以获得比较好的铁磁性而且其稳定性很高, 有望在自旋电子器件方面发挥重要的作用.According to density functional theory of first-principles calculations theory, we systematically study the electronic structures, magnetisms and stabilities of transition metal (TM = V, Cr, Mn) doped MoS2 single-layers. The results show that V-and Mn-monodoped systems each have magnetism and the magnetic moment mainly concentrates on the transition metal dopant atom, but Cr-doped MoS2 does not display magnetism. Further study on the magnetic coupling of double atoms doped MoS2 shows that the stable ferromagnetic state at room temperature is observed in the Mn-doped MoS2. However, the system shows a non-spin polarization state due to doping with V. The calculated formation energy indicates that the Mn-doped MoS2 is the most stable system. Therefore, Mn-doped single-layer MoS2 maybe have potential applications in the spin electronic devices due to its good ferromagnetism and reliable stability.
-
Keywords:
- single-layer MoS2 /
- doping /
- ferromagnetism /
- first-principle
[1] Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]
[2] Sebastian K C, Chawda M, Jonny L, Bodas D 2010 Mater. Lett. 64 2269
[3] Chen S, Wu Q Y, Chen Z G, Xu G G, Huang Z G 2009 Acta Phys. Sin. 58 2011 (in Chinese) [陈珊, 吴青云, 陈志高, 许桂贵, 黄志高 2009 58 2011]
[4] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 15
[5] Akai H 1998 Phys. Rev. Lett. 81 3002
[6] Snure M, Kumar D, Tiwari A 2009 Appl. Phys. Lett. 94 012510
[7] Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnár S 2011 Nano Lett. 11 2584
[8] Paskach Y J, Schrader G L, McCarley R E 2002 J. Catal. 211 285
[9] Muratore C, Voevodin A A 2006 Surf. Coat. Technol. 201 4125
[10] Frame F A, Osterloh F E 2010 J. Phys. Chem. C 114 10628
[11] Huang M, Cho K 2009 J. Phys. Chem. C 113 5238
[12] Ayari A, Cobas E, Ogundadegbe O, Fuhrer M S 2007 J. Appl. Phys. 101 014507
[13] Mdleni M M, Hyeon T, Suslick K S 1998 J. Am. Chem. Soc. 120 6189
[14] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[15] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[16] Zhang Y, Ye J, Matsuhashi Y S, Iwasa Y 2012 Nano Lett. 12 1136
[17] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[18] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
[19] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[20] Kresse G, Joubert J 1999 Phys. Rev. B 59 1758
[21] Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193
[22] Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 62 037103]
[23] Chen Q, Wang J L 2009 Chem. Phys. Lett. 474 336
[24] Kam K K, Parkinson B A 1982 J. Phys. Chem. 86 463
[25] Kadantseva E S, Hawrylak P 2012 Solid State Commun. 152 909
[26] Bollinger M V, Lauritsen J V, Jacobsen K W, Norskov J K, Helveg S, Besenbacher F 2001 Phys. Rev. Lett. 87 196803
[27] Zhang J, Soon J M, Loh K P, Yin J H, Ding J, Sullivian M B, Wu P 2007 Nano Lett. 7 2370
[28] Li Y, Zhou Z, Zhang S, Chen Z 2008 J. Am. Chem. Soc. 130 16739
-
[1] Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]
[2] Sebastian K C, Chawda M, Jonny L, Bodas D 2010 Mater. Lett. 64 2269
[3] Chen S, Wu Q Y, Chen Z G, Xu G G, Huang Z G 2009 Acta Phys. Sin. 58 2011 (in Chinese) [陈珊, 吴青云, 陈志高, 许桂贵, 黄志高 2009 58 2011]
[4] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 15
[5] Akai H 1998 Phys. Rev. Lett. 81 3002
[6] Snure M, Kumar D, Tiwari A 2009 Appl. Phys. Lett. 94 012510
[7] Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnár S 2011 Nano Lett. 11 2584
[8] Paskach Y J, Schrader G L, McCarley R E 2002 J. Catal. 211 285
[9] Muratore C, Voevodin A A 2006 Surf. Coat. Technol. 201 4125
[10] Frame F A, Osterloh F E 2010 J. Phys. Chem. C 114 10628
[11] Huang M, Cho K 2009 J. Phys. Chem. C 113 5238
[12] Ayari A, Cobas E, Ogundadegbe O, Fuhrer M S 2007 J. Appl. Phys. 101 014507
[13] Mdleni M M, Hyeon T, Suslick K S 1998 J. Am. Chem. Soc. 120 6189
[14] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[15] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[16] Zhang Y, Ye J, Matsuhashi Y S, Iwasa Y 2012 Nano Lett. 12 1136
[17] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[18] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
[19] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[20] Kresse G, Joubert J 1999 Phys. Rev. B 59 1758
[21] Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193
[22] Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 62 037103]
[23] Chen Q, Wang J L 2009 Chem. Phys. Lett. 474 336
[24] Kam K K, Parkinson B A 1982 J. Phys. Chem. 86 463
[25] Kadantseva E S, Hawrylak P 2012 Solid State Commun. 152 909
[26] Bollinger M V, Lauritsen J V, Jacobsen K W, Norskov J K, Helveg S, Besenbacher F 2001 Phys. Rev. Lett. 87 196803
[27] Zhang J, Soon J M, Loh K P, Yin J H, Ding J, Sullivian M B, Wu P 2007 Nano Lett. 7 2370
[28] Li Y, Zhou Z, Zhang S, Chen Z 2008 J. Am. Chem. Soc. 130 16739
计量
- 文章访问数: 8742
- PDF下载量: 2135
- 被引次数: 0