Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on structural stability, electronic structure, elastic properties and hardness of Cr-doped CuZr2

Wang Kun Xu He-Yan Zheng Xiong Zhang Hai-Feng

Citation:

First-principles study on structural stability, electronic structure, elastic properties and hardness of Cr-doped CuZr2

Wang Kun, Xu He-Yan, Zheng Xiong, Zhang Hai-Feng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • In recent years, the design and development of new high-performance alloys based on first principles has received extensive attention. However, there are few reports on the structural design and thermodynamic properties of Cu-Zr alloys at nanoscale. In this paper, based on the crystal structure characteristics of CuZr2, 12 kinds of Cr-doped CuZr2 structures were designed and optimized by the method of Cr atom doping through the first-principle calculation based on the density functional theory, and 6 kinds of mechanically and dynamically stable doped structure models were found. By calculating the electronic structure, elastic properties and hardness of the CuZr2 and its dynamically stable Cr-doped structures, it is found that all the studied objects have energy bands through the Fermi energy level and are metallic. The main contributors to the metallic properties of the CuZr2 are the p and d orbital electrons of Zr, while the main contributors to the metallic properties of the 6 dynamically stable Cr-doped CuZr2 structures are the p and d orbital electrons of Cr and Zr. Meanwhile, CuZr2 has symmetrically distributed spin electrons that do not show magnetism externally. However, the doping of Cr atoms increases the elemental species of the matrix. In addition to the difference of spin electrons brought by the d-orbital electrons of Cr atoms, the doped Cr atoms also destroy the symmetrical distribution of electrons with different spin directions in the p- and d-orbitals of Zr atoms in the matrix, so that the designed 6 dynamically stable Cr-doped CuZr2 structures exhibit ferromagnetic properties with magnetic moments ranging from 0.303 to 5.243 μB. In addition, it is found that Cr can improve the mechanical properties of CuZr2. When the Cr atom is used to replace the Zr atom in the matrix, the elastic modulus and hardness of the material can be improved, and when the Cr atom is used to replace the Cu atom in the matrix, the machining properties of the material can be improved due to the reduction of hardness. The datasets presented in this paper, including the band structure, density of states, phonon dispersion frequency, etc., are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00122 (https://www.scidb.cn/s/B77JFn).
  • [1]

    Park J, Ahn M, Yu G, Kim J, Kim S, Shin C 2024 Mater. Today Commun. 38 107821

    [2]

    Zhao Y, Pang T, He J, Tao X, Chen H, Ouyang Y, Du Y 2018 Calphad-Comput. Coupling Ph. Diagrams Thermochem. 61 92

    [3]

    Wang T, Cullinan T E, Napolitano R E 2014 Acta Mater. 62 188

    [4]

    Nishiyama N, Amiya K, Inoue A 2007 J. Non-Cryst. Solids 353 3615

    [5]

    Inoue A 2000 Acta Mater. 48 279

    [6]

    Yu J, Zhao F, Yang H, Liu J, Ma J, Fang Y 2023 J. Zhejiang Univ.-SCI A 24 206

    [7]

    Zeng K J, Hämäläinen M 1995 J. Alloy. Compd. 220 53

    [8]

    Liu Q, Zhang X, Ge Y, Wang J, Cui J Z 2006 Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 37 3233

    [9]

    Wu G, Dong K, Xu Z, Xiao S, Wei W, Chen H, Li J, Huang Z, Li J, Gao G, Kang G, Tu C, Huang X 2022 Railway Eng. Sci. 30 437

    [10]

    Zeng K J, Hämäläinen M, Lukas H L 1994 J. Phase Equilib. 15 577

    [11]

    Zinkle S J 2016 Phys. Scr. T167 014004

    [12]

    Preston S D, Bretherton I, Forty C B A 2003 Fusion Eng. Des. 66-68 441

    [13]

    Taubin M L, Solntseva E S, Chesnokov D A 2017 Int. J. Hydrog. Energy 42 24541

    [14]

    Solntceva E S, Taubin M L, Bochkov N A, Solntsev V A, Yaskolko A A 2016 Int. J. Hydrog. Energy 41 7206

    [15]

    Higashino S, Miyashita D, Ishimoto T, Miyoshi E, Nakano T, Tane M 2025 Addit. Manuf. 102 104720

    [16]

    Lu Y, Xie G, Wang D, Zhang S, Zheng W, Shen J, Lou L, Zhang J 2018 Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 720 69

    [17]

    Lu Y X, Bai C L, Shi E W, Fang X, Li Z G 2009 China's Advanced Materials Science and Technology Development Roadmap to 2050 (Bei Jing: Science Press) p79 (in Chinese) [路甬祥, 白春礼, 施尔畏, 方新, 李志刚 2009 中国至2050年先进材料科技发展路线图 (北京: 科学出版社) 第79页]

    [18]

    Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloy. Compd. 509 2885

    [19]

    Zhang D, Wang J, Dong K, Hao A 2018 Comput. Mater. Sci. 155 410

    [20]

    Wei X, Chen Z, Kong L, Wu J, Zhang H 2022 Materials 15 5990

    [21]

    Zhang W H, Halet J-F, Mori T 2023 J. Mater. Chem. A 11 24228

    [22]

    Caliskan S, Almessiere M A, Baykal A, Slimani Y 2023 Comput. Mater. Sci. 226 112243

    [23]

    Cheng Z, Peng Z, Zhong B, Liu H, Lu Z, Zhu S, Liu J 2023 Intermetallics 160 107918

    [24]

    Han Y, Chen J, Lin M, Zhang K, Lu H 2023 Vacuum 214 112239

    [25]

    Li Y, Li J, Wu W, Gong J, Song X, Wang Y, Chen Z 2023 Vacuum 215 112269

    [26]

    Lu Z Q, Wang F, Liu Y H 2021 Sci Rep 11 12720

    [27]

    Rao Z Y, Tung P Y, Xie R W, Wei Y, Zhang H B, Ferrari A, Klaver T P C, Körmann F, Sukumar P T, Kwiatkowski da Silva A, Chen Y, Li Z M, Ponge D, Neugebauer J, Gutfleisch O, Bauer S, Raabe D 2022 Science 378 78

    [28]

    Das S, Chattopadhyaya S, Bhattacharjee R 2021 Mater. Today: Proc. 46 6324

    [29]

    Wu F, Chen H, Qiao J, Hou Y, Yan R, Yang Z 2023 Eur. Phys. J. B 96 93

    [30]

    Hamad B 2018 J. Electron. Mater. 47 4047

    [31]

    Yamaguchi K, Song Y-C, Yoshida T, Itagaki K 2008 J. Alloy. Compd. 452 73

    [32]

    Ding C, Liu Q, Sun Q, Feng L 2024 IEEJ Trans. Electr. Electron. Eng. 19 1916

    [33]

    Banu S L, Veerapandy V, Fjellvåg H, Vajeeston P 2023 ACS Omega 8 13799

    [34]

    Okamoto H 2008 J. Phase Equilib. Diffus. 29 204

    [35]

    Okamoto H 1997 J. Phase Equilib. 18 220

    [36]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [37]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [38]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [39]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [40]

    BLÖCHL P E 1994 Phys. Rev. B 50 17953

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [42]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299

    [43]

    Savrasov S Y 1996 Phys. Rev. B 54 16470

    [44]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355

    [45]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [46]

    Allmann R, Hinek R 2007 Acta Crystallogr. Sect. A 63 412

    [47]

    Zagorac D, Müller H, Ruehl S, Zagorac J, Rehme S 2019 J. Appl. Crystallogr. 52 918

    [48]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002

    [49]

    Arias D, Abriata J P 1990 J. Phase Equilib. 11 452

    [50]

    Du J, Wen B, Melnik R, Kawazoe Y 2014 J. Alloy. Compd. 588 96

    [51]

    Choudhury N, Chaplot S L 2006 Phys. Rev. B 73 094304

    [52]

    Srinivasu K, Modak B, Ghanty T K 2018 J. Nucl. Mater. 510 360

    [53]

    Noordhoek M J, Besmann T M, Andersson D, Middleburgh S C, Chernatynskiy A 2016 J. Nucl. Mater. 479 216

    [54]

    Wang K, Qiao Y J, Zhang X H, Wang X D, Zheng T, Bai C Y, Zhang Y M, Du S Y 2022 Acta Phys. Sin. 71 227102 (in Chinese) [王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹 2022 71 227102]

    [55]

    Wang K, Qiao Y, Zhang X, Wang X, Zhang Y, Wang P, Du S 2021 Eur. Phys. J. Plus 136 409

    [56]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

    [57]

    Cai J, Chen G L, Fang Z Z 1995 Acta Phys. Sin. 44 977 (in Chinese) [蔡军, 陈国良, 方正知 1995 44 977]

    [58]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104

    [59]

    Xu J, Qiu N, Huang Q, Du S 2020 J. Nucl. Mater. 540 152358

    [60]

    Abrahams S C, Hsu F S L 1975 J. Chem. Phys. 63 1162

    [61]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909

    [62]

    Teter D M 1998 MRS Bull. 23 22

    [63]

    Šimůnek A 2009 Phys. Rev. B 80 060103

    [64]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275

    [65]

    Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mat. 33 93

    [66]

    Rahman M A, Mousumi K, Ali M L, Khatun R, Rahman M Z, Sahriar Hasan S, Hasan W, Rasheduzzaman M, Hasan M Z 2023 Results Phys. 44 106141

    [67]

    Zhang L, Jiao F, Qin W Q, Wei Q 2023 ACS Omega 8 43644

    [68]

    Barsoum M W, Radovic M 2011 Ann. Rev. Mater. Res. 41 195

  • [1] WAN Yuwei, WANG Rui, ZHOU Wenquan, WANG Yiping, CAI Yanan, WANG Chang. First-principles study of NH3 adsorption on Ag- and Cu doped graphene oxide. Acta Physica Sinica, doi: 10.7498/aps.74.20241737
    [2] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, doi: 10.7498/aps.70.20202043
    [3] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, doi: 10.7498/aps.70.20201287
    [4] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, doi: 10.7498/aps.67.20172290
    [5] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, doi: 10.7498/aps.67.20172356
    [6] Yan Shun-Tao, Jiang Zhen-Yi. First principles study of the effect of Cu doping on the martensitic transformation of TiNi alloy. Acta Physica Sinica, doi: 10.7498/aps.66.130501
    [7] Tao Peng-Cheng, Huang Yan, Zhou Xiao-Hao, Chen Xiao-Shuang, Lu Wei. First principles investigation of the tuning in metal-MoS2 interface induced by doping. Acta Physica Sinica, doi: 10.7498/aps.66.118201
    [8] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, doi: 10.7498/aps.65.077101
    [9] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, doi: 10.7498/aps.65.056801
    [10] Wang Qing-Bao, Zhang Zhong, Xu Xi-Jin, Lü Ying-Bao, Zhang Qin. Theoretical and experimental studies on N, Fe, La co-doped anatase TiO2 band adjustment. Acta Physica Sinica, doi: 10.7498/aps.64.017101
    [11] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, doi: 10.7498/aps.64.087101
    [12] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, doi: 10.7498/aps.64.207101
    [13] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, doi: 10.7498/aps.63.163101
    [14] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, doi: 10.7498/aps.62.047101
    [15] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, doi: 10.7498/aps.62.187102
    [16] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, doi: 10.7498/aps.62.037103
    [17] Xu Jin-Rong, Wang Ying, Zhu Xing-Feng, Li Ping, Zhang Li. First-principles study of N-doped and N-V co-doped anatase TiO2. Acta Physica Sinica, doi: 10.7498/aps.61.207103
    [18] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, doi: 10.7498/aps.58.1901
    [19] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, doi: 10.7498/aps.58.5624
    [20] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, doi: 10.7498/aps.56.1585
Metrics
  • Abstract views:  41
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  29 April 2025

/

返回文章
返回
Baidu
map