-
In recent years, the design and development of new high-performance alloys based on first principles has received extensive attention. However, there are few reports on the structural design and thermodynamic properties of Cu-Zr alloys at nanoscale. In this paper, based on the crystal structure characteristics of CuZr2, 12 kinds of Cr-doped CuZr2 structures were designed and optimized by the method of Cr atom doping through the first-principle calculation based on the density functional theory, and 6 kinds of mechanically and dynamically stable doped structure models were found. By calculating the electronic structure, elastic properties and hardness of the CuZr2 and its dynamically stable Cr-doped structures, it is found that all the studied objects have energy bands through the Fermi energy level and are metallic. The main contributors to the metallic properties of the CuZr2 are the p and d orbital electrons of Zr, while the main contributors to the metallic properties of the 6 dynamically stable Cr-doped CuZr2 structures are the p and d orbital electrons of Cr and Zr. Meanwhile, CuZr2 has symmetrically distributed spin electrons that do not show magnetism externally. However, the doping of Cr atoms increases the elemental species of the matrix. In addition to the difference of spin electrons brought by the d-orbital electrons of Cr atoms, the doped Cr atoms also destroy the symmetrical distribution of electrons with different spin directions in the p- and d-orbitals of Zr atoms in the matrix, so that the designed 6 dynamically stable Cr-doped CuZr2 structures exhibit ferromagnetic properties with magnetic moments ranging from 0.303 to 5.243 μB. In addition, it is found that Cr can improve the mechanical properties of CuZr2. When the Cr atom is used to replace the Zr atom in the matrix, the elastic modulus and hardness of the material can be improved, and when the Cr atom is used to replace the Cu atom in the matrix, the machining properties of the material can be improved due to the reduction of hardness. The datasets presented in this paper, including the band structure, density of states, phonon dispersion frequency, etc., are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00122 (https://www.scidb.cn/s/B77JFn).
-
Keywords:
- first-principles /
- CuZr2 alloy /
- doping
-
[1] Park J, Ahn M, Yu G, Kim J, Kim S, Shin C 2024 Mater. Today Commun. 38 107821
[2] Zhao Y, Pang T, He J, Tao X, Chen H, Ouyang Y, Du Y 2018 Calphad-Comput. Coupling Ph. Diagrams Thermochem. 61 92
[3] Wang T, Cullinan T E, Napolitano R E 2014 Acta Mater. 62 188
[4] Nishiyama N, Amiya K, Inoue A 2007 J. Non-Cryst. Solids 353 3615
[5] Inoue A 2000 Acta Mater. 48 279
[6] Yu J, Zhao F, Yang H, Liu J, Ma J, Fang Y 2023 J. Zhejiang Univ.-SCI A 24 206
[7] Zeng K J, Hämäläinen M 1995 J. Alloy. Compd. 220 53
[8] Liu Q, Zhang X, Ge Y, Wang J, Cui J Z 2006 Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 37 3233
[9] Wu G, Dong K, Xu Z, Xiao S, Wei W, Chen H, Li J, Huang Z, Li J, Gao G, Kang G, Tu C, Huang X 2022 Railway Eng. Sci. 30 437
[10] Zeng K J, Hämäläinen M, Lukas H L 1994 J. Phase Equilib. 15 577
[11] Zinkle S J 2016 Phys. Scr. T167 014004
[12] Preston S D, Bretherton I, Forty C B A 2003 Fusion Eng. Des. 66-68 441
[13] Taubin M L, Solntseva E S, Chesnokov D A 2017 Int. J. Hydrog. Energy 42 24541
[14] Solntceva E S, Taubin M L, Bochkov N A, Solntsev V A, Yaskolko A A 2016 Int. J. Hydrog. Energy 41 7206
[15] Higashino S, Miyashita D, Ishimoto T, Miyoshi E, Nakano T, Tane M 2025 Addit. Manuf. 102 104720
[16] Lu Y, Xie G, Wang D, Zhang S, Zheng W, Shen J, Lou L, Zhang J 2018 Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 720 69
[17] Lu Y X, Bai C L, Shi E W, Fang X, Li Z G 2009 China's Advanced Materials Science and Technology Development Roadmap to 2050 (Bei Jing: Science Press) p79 (in Chinese) [路甬祥, 白春礼, 施尔畏, 方新, 李志刚 2009 中国至2050年先进材料科技发展路线图 (北京: 科学出版社) 第79页]
[18] Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloy. Compd. 509 2885
[19] Zhang D, Wang J, Dong K, Hao A 2018 Comput. Mater. Sci. 155 410
[20] Wei X, Chen Z, Kong L, Wu J, Zhang H 2022 Materials 15 5990
[21] Zhang W H, Halet J-F, Mori T 2023 J. Mater. Chem. A 11 24228
[22] Caliskan S, Almessiere M A, Baykal A, Slimani Y 2023 Comput. Mater. Sci. 226 112243
[23] Cheng Z, Peng Z, Zhong B, Liu H, Lu Z, Zhu S, Liu J 2023 Intermetallics 160 107918
[24] Han Y, Chen J, Lin M, Zhang K, Lu H 2023 Vacuum 214 112239
[25] Li Y, Li J, Wu W, Gong J, Song X, Wang Y, Chen Z 2023 Vacuum 215 112269
[26] Lu Z Q, Wang F, Liu Y H 2021 Sci Rep 11 12720
[27] Rao Z Y, Tung P Y, Xie R W, Wei Y, Zhang H B, Ferrari A, Klaver T P C, Körmann F, Sukumar P T, Kwiatkowski da Silva A, Chen Y, Li Z M, Ponge D, Neugebauer J, Gutfleisch O, Bauer S, Raabe D 2022 Science 378 78
[28] Das S, Chattopadhyaya S, Bhattacharjee R 2021 Mater. Today: Proc. 46 6324
[29] Wu F, Chen H, Qiao J, Hou Y, Yan R, Yang Z 2023 Eur. Phys. J. B 96 93
[30] Hamad B 2018 J. Electron. Mater. 47 4047
[31] Yamaguchi K, Song Y-C, Yoshida T, Itagaki K 2008 J. Alloy. Compd. 452 73
[32] Ding C, Liu Q, Sun Q, Feng L 2024 IEEJ Trans. Electr. Electron. Eng. 19 1916
[33] Banu S L, Veerapandy V, Fjellvåg H, Vajeeston P 2023 ACS Omega 8 13799
[34] Okamoto H 2008 J. Phase Equilib. Diffus. 29 204
[35] Okamoto H 1997 J. Phase Equilib. 18 220
[36] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[37] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[38] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[40] BLÖCHL P E 1994 Phys. Rev. B 50 17953
[41] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299
[43] Savrasov S Y 1996 Phys. Rev. B 54 16470
[44] Gonze X, Lee C 1997 Phys. Rev. B 55 10355
[45] Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515
[46] Allmann R, Hinek R 2007 Acta Crystallogr. Sect. A 63 412
[47] Zagorac D, Müller H, Ruehl S, Zagorac J, Rehme S 2019 J. Appl. Crystallogr. 52 918
[48] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002
[49] Arias D, Abriata J P 1990 J. Phase Equilib. 11 452
[50] Du J, Wen B, Melnik R, Kawazoe Y 2014 J. Alloy. Compd. 588 96
[51] Choudhury N, Chaplot S L 2006 Phys. Rev. B 73 094304
[52] Srinivasu K, Modak B, Ghanty T K 2018 J. Nucl. Mater. 510 360
[53] Noordhoek M J, Besmann T M, Andersson D, Middleburgh S C, Chernatynskiy A 2016 J. Nucl. Mater. 479 216
[54] Wang K, Qiao Y J, Zhang X H, Wang X D, Zheng T, Bai C Y, Zhang Y M, Du S Y 2022 Acta Phys. Sin. 71 227102 (in Chinese) [王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹 2022 71 227102]
[55] Wang K, Qiao Y, Zhang X, Wang X, Zhang Y, Wang P, Du S 2021 Eur. Phys. J. Plus 136 409
[56] Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[57] Cai J, Chen G L, Fang Z Z 1995 Acta Phys. Sin. 44 977 (in Chinese) [蔡军, 陈国良, 方正知 1995 44 977]
[58] Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104
[59] Xu J, Qiu N, Huang Q, Du S 2020 J. Nucl. Mater. 540 152358
[60] Abrahams S C, Hsu F S L 1975 J. Chem. Phys. 63 1162
[61] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[62] Teter D M 1998 MRS Bull. 23 22
[63] Šimůnek A 2009 Phys. Rev. B 80 060103
[64] Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275
[65] Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mat. 33 93
[66] Rahman M A, Mousumi K, Ali M L, Khatun R, Rahman M Z, Sahriar Hasan S, Hasan W, Rasheduzzaman M, Hasan M Z 2023 Results Phys. 44 106141
[67] Zhang L, Jiao F, Qin W Q, Wei Q 2023 ACS Omega 8 43644
[68] Barsoum M W, Radovic M 2011 Ann. Rev. Mater. Res. 41 195
Metrics
- Abstract views: 41
- PDF Downloads: 4
- Cited By: 0