-
基于密度泛函理论的第一性原理平面波赝势方法, 运用Vasp方法计算了Eu, N掺杂及Eu/N共掺杂锐钛矿TiO2的结构, 并分析了其电子及光学性质. 通过计算发现有一些Eu的4f态电子在Eu掺杂锐钛矿TiO2的体系的费米能级附近出现杂质能级, 并且N掺杂会使得锐钛矿TiO2的禁带宽度减小. 对于共掺杂体系而言, Eu/N共掺杂的协同效应能导致锐钛矿TiO2的晶格畸变及禁带宽度减小. 与此同时, 计算得到的光吸收谱表明Eu/N混合掺杂锐钛矿TiO2展现出了明显的光谱吸收边缘红移. 这些计算结果表明Eu/N共掺杂锐钛矿TiO2具有优良的光催化活性.We have calculated the electronic and optical properties of Eu-doped, N-doped, and (Eu,N)-codoped TiO2 using plane-wave pseudopotential method based on the density functional theory. The calculated results show that there are impurity levels of Eu 4f appearing in the band gap of Eu-doped system, and N-doped system can lead to narrowing of the band gap. Moreover, the synergistic effect of the Eu and N codoped TiO2 leads to the lattice distortion and band gap narrowing. Optical absorption curves indicate that the (Eu,N)-codoped system exhibits a significant red-shift of absorption edge, which enhances the visible-light photocatalytic activity.
-
Keywords:
- TiO2 /
- codoping /
- visible-light photocatalyst /
- density functional theory
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269
[3] Hoffmann M R, Matrin S T, Wonyong C, Bahnemann D W 1995 Chem. Rev. 95 69
[4] Jing L Q, Sun X J, Shang J 2003 Sol. Ener. Mater. Sol. Cells 79 133
[5] Byme J A, Eggins B R, Brown N M D 1998 Appl. Catal. B 17 25
[6] Tang H, Lévy F, Berger H, Schmid P E 1995 Phys. Rev. B 52 7771
[7] Zhao D, Huang X, Tian B, Zhou S, Li Y, Du Z 2011 Appl. Phys. Lett. 98 162107
[8] Jia L, Wu C, Li Y, Han S, Li Z, Chi B, Pu J, Jian L 2011 Appl. Phys. Lett. 98 211903
[9] Tan K, Zhang H, Xie C, Zheng H, Gu Y, Zhang W F 2010 Catal. Commun. 11 331
[10] Li N, Yao K L, Li L, Sun Z Y, Gao G Y, Zhu L 2011 J. Appl. Phys. 110 073513
[11] Su Y, Xiao Y, Li Y, Du Y, Zhang Y 2011 Mater. Chem. Phys. 126 761
[12] Nakhate G G, Nikam V S, Kanade K G, Arbuj S, Kale B B, Baeg J O 2010 Mater. Chem. Phys. 124 976
[13] Lin Y M, Jiang Z Y, Hu X Y, Zhang X D, Fan J, Miao H, Shang Y B 2012 Chin. Phys. B 21 033103
[14] Long R, English N J 2012 New J. Phys. 14 053007
[15] Xu J J, Ao Y H, Fu D, Yuan C W 2008 J. Colloid Interf. Sci. 328 447
[16] Kresse G, Hafner J 1994 J. Phys. Rev. B 47 558
[17] Kresse G, Furthmller J 1996 J. Phys. Rev. B 54 11169
[18] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[19] Vanderbilt D 1990 Phys. Rev. B 41 7892
[20] Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71
-
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269
[3] Hoffmann M R, Matrin S T, Wonyong C, Bahnemann D W 1995 Chem. Rev. 95 69
[4] Jing L Q, Sun X J, Shang J 2003 Sol. Ener. Mater. Sol. Cells 79 133
[5] Byme J A, Eggins B R, Brown N M D 1998 Appl. Catal. B 17 25
[6] Tang H, Lévy F, Berger H, Schmid P E 1995 Phys. Rev. B 52 7771
[7] Zhao D, Huang X, Tian B, Zhou S, Li Y, Du Z 2011 Appl. Phys. Lett. 98 162107
[8] Jia L, Wu C, Li Y, Han S, Li Z, Chi B, Pu J, Jian L 2011 Appl. Phys. Lett. 98 211903
[9] Tan K, Zhang H, Xie C, Zheng H, Gu Y, Zhang W F 2010 Catal. Commun. 11 331
[10] Li N, Yao K L, Li L, Sun Z Y, Gao G Y, Zhu L 2011 J. Appl. Phys. 110 073513
[11] Su Y, Xiao Y, Li Y, Du Y, Zhang Y 2011 Mater. Chem. Phys. 126 761
[12] Nakhate G G, Nikam V S, Kanade K G, Arbuj S, Kale B B, Baeg J O 2010 Mater. Chem. Phys. 124 976
[13] Lin Y M, Jiang Z Y, Hu X Y, Zhang X D, Fan J, Miao H, Shang Y B 2012 Chin. Phys. B 21 033103
[14] Long R, English N J 2012 New J. Phys. 14 053007
[15] Xu J J, Ao Y H, Fu D, Yuan C W 2008 J. Colloid Interf. Sci. 328 447
[16] Kresse G, Hafner J 1994 J. Phys. Rev. B 47 558
[17] Kresse G, Furthmller J 1996 J. Phys. Rev. B 54 11169
[18] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[19] Vanderbilt D 1990 Phys. Rev. B 41 7892
[20] Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71
计量
- 文章访问数: 6004
- PDF下载量: 905
- 被引次数: 0