Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4

Jia Ming-Zhen Wang Hong-Yan Chen Yuan-Zheng Ma Cun-Liang Wang Hui

Citation:

First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4

Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Li2MnSiO4 is one of the potential cathode materials for lithium batteries due to its high capacities, but the poor conductivity hinders its further development. The cycling performance and electrochemical property of Li2MnSiO4 cathode material can be improved by doping metal cation. Twelve structures LixMn1-yMySiO4 (x=2, 1, 0; y=0.5, 1; M= Al, Fe, Mg) by doping Al, Fe and Mg are constructed in this paper, and their structures, electronic properties and delithiation process are studied by using the density functional theory of first principles within the GGA+U scheme. The best doping site and delithiated structure are found by comparing their energies. The results show that Al-doping is the best way to improve the conductivity and cyclability of the cathode material Li2MnSiO4. The pure Li2MnSiO4 has a low conductivity because of its large band gap (3.41 eV), while Al-doping Li2MnSiO4 crystal has metallic characteristics due to its electron densities of state with up-spin and down-spin cross through the Fermi level. The band gap is also reduced when it is Fe-doped, which improves the conductivity of Li2MnSiO4. Among the delithiated structures LixMnSiO4 (x=1, 0), Al-doping enhances the structural stability because of the lowest formation energy and its cyclability is improved by reducing the volume change. Within the lithium ion extraction from the Li2MnSiO4 and Li2Mn0.5M0.5SiO4 (M=Al, Fe, Mg), the Mn-O and M-O bonding have much more ionic features, while the covalent bonding feature between Si and O is almost unchanged. And the fully delithiated MnSiO4 and Mn0.5M0.5SiO4 show semic-metallic properties depending on the density of states of configuration. The delithiated voltages for the first Li extraction process decrease when Al and Fe are doped. Therefore the Al-doping in the Li2MnSiO4 is expected to be an effective way to improve the cycling performance and electrochemical property for Li-ion battery cathode material.
    • Funds: Project supported by the National Science Foundation, China (Grant Nos. 11174237, 11404268), the Applied Science and Technology Project of Sichuan Province, China (Grant No. 2013JY0035), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2682014ZT30).
    [1]

    Kalantarian M M, Asgari S, Mustarelli P 2014 J. Mater. Chem. A 2 107

    [2]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 63 048202]

    [3]

    Zhang P 2014 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese) [张鹏 2014 博士学位论文 (厦门: 厦门大学)]

    [4]

    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156

    [5]

    Zhong G H, Li Y L, Yan P, Liu Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693

    [6]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 Comput. Mater. Sci. 44 1243

    [7]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292

    [8]

    Nishimura S I, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A 2008 J. Am. Chem. Soc. 130 13212

    [9]

    Sirisopanaporn C, Masquelier C, Bruce P G, Armstrong A R, Dominko R 2011 J. Am. Chem. Soc. 133 1263

    [10]

    Gong Z L, Yang Y 2011 Energy Environ. Sci. 4 3223

    [11]

    Ru Q, Hu S J, Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese) [汝强, 胡社军, 赵灵智 2011 60 036301]

    [12]

    Huang X B, Li X, Wang H Y, Pan Z L, Qu M Z, Yu Z L 2010 Electrochim. Acta 55 7362

    [13]

    Aravindan V, Karthikeyan K, Kang K S, Yoon W S, Kim W S, Lee Y S 2011 J. Mater. Chem. 21 2470

    [14]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Y 2012 Physics 41 95 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英 2012 物理 41 95]

    [15]

    Zhang Z, Ma S S, Kou D, Liu X Q 2013 Battery 43 357 (in Chinese) [张峥, 马慎思, 寇丹, 刘兴泉 2013 电池 43 357]

    [16]

    Ma S S 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [马慎思 2013 硕士学位论文 (成都: 电子科技大学)]

    [17]

    Peng W, Yue M, Liang Q, Hu S J, Hou X H 2011 Acta Phys. Sin. 60 038202 (in Chinese) [彭薇, 岳敏, 梁奇, 胡社军, 侯贤华 2011 60 038202]

    [18]

    Rangappa D, Murukanahally K D, Tomai T, Unemoto A, Honma I 2012 Nano Lett. 12 1146

    [19]

    Moriya M, Miyahara M, Hokazono M, Sasaki H, Nemoto A, Katayama S, Akimoto Y, Hirano S 2014 J. Electrochem. Soc. 161 A97

    [20]

    Deng C, Zhang S, Yang S Y 2009 J. Alloys Compd. 487 L18

    [21]

    Gong Z L, Li Y X, Yang Y 2006 Electrochem. Solid-State Lett. 9 A542

    [22]

    Liu W G, Xu Y H, Yang R, Ren B 2010 Hot Working Technol. 39 21 (in Chinese) [刘文刚, 许云华, 杨蓉, 任冰 2010 热加工工艺 39 21]

    [23]

    Choi S, Kim S J, Yun Y J, Lee S S, Choi S Y, Jung H K 2013 Mater. Lett. 105 113

    [24]

    Deng C, Zhang S, Wu Y X, Zhao B D 2014 J. Electroanal. Chem. 719 150

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [28]

    Dominko R, Bele M, Gaberšcek M, Meden A, Remškar M, Jamnik J 2006 Electrochem. Commun. 8 217

    [29]

    Kuganathan N, Islam M S 2009 Chem. Mater. 21 5196

    [30]

    Zhang S, Lin Z, Ji L W, Li Y, Xu G J, Xue L G, Li S, Lu Y, Toprakci O, Zhang X W 2012 J. Mater. Chem. 22 14661

    [31]

    Belharouak I, Abouimrane A, Amine K 2009 J. Phys. Chem. C 113 20733

    [32]

    Lee H, Park S D, Moon J, Lee H, Cho K, Cho M, Kim S Y 2014 Chem. Mater. 26 3896

    [33]

    Chen R Y, Heinzmann R, Mangold S, Chakravadhanula K, Hahn H, Indris S 2013 J. Phys. Chem. C 117 884

    [34]

    Longo R C, Xiong K, KC S, Cho K 2014 Electrochim. Acta 121 434

    [35]

    Zhang P, Zheng Y, Yu S, Wu S Q, Wen Y H, Zhu Z Z, Yang Y 2013 Electrochim. Acta 111 172

    [36]

    Aydinol M K, Kohan A F, Ceder G 1997 Phys. Rev. B 56 1354

    [37]

    Osnis A, Kosa M, Aurbach D, Major D T 2013 J. Phys. Chem. C 117 17919

    [38]

    Shao B, Abe Y, Taniguchi I 2013 Powder Technol. 235 1

  • [1]

    Kalantarian M M, Asgari S, Mustarelli P 2014 J. Mater. Chem. A 2 107

    [2]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 63 048202]

    [3]

    Zhang P 2014 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese) [张鹏 2014 博士学位论文 (厦门: 厦门大学)]

    [4]

    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156

    [5]

    Zhong G H, Li Y L, Yan P, Liu Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693

    [6]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 Comput. Mater. Sci. 44 1243

    [7]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292

    [8]

    Nishimura S I, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A 2008 J. Am. Chem. Soc. 130 13212

    [9]

    Sirisopanaporn C, Masquelier C, Bruce P G, Armstrong A R, Dominko R 2011 J. Am. Chem. Soc. 133 1263

    [10]

    Gong Z L, Yang Y 2011 Energy Environ. Sci. 4 3223

    [11]

    Ru Q, Hu S J, Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese) [汝强, 胡社军, 赵灵智 2011 60 036301]

    [12]

    Huang X B, Li X, Wang H Y, Pan Z L, Qu M Z, Yu Z L 2010 Electrochim. Acta 55 7362

    [13]

    Aravindan V, Karthikeyan K, Kang K S, Yoon W S, Kim W S, Lee Y S 2011 J. Mater. Chem. 21 2470

    [14]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Y 2012 Physics 41 95 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英 2012 物理 41 95]

    [15]

    Zhang Z, Ma S S, Kou D, Liu X Q 2013 Battery 43 357 (in Chinese) [张峥, 马慎思, 寇丹, 刘兴泉 2013 电池 43 357]

    [16]

    Ma S S 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [马慎思 2013 硕士学位论文 (成都: 电子科技大学)]

    [17]

    Peng W, Yue M, Liang Q, Hu S J, Hou X H 2011 Acta Phys. Sin. 60 038202 (in Chinese) [彭薇, 岳敏, 梁奇, 胡社军, 侯贤华 2011 60 038202]

    [18]

    Rangappa D, Murukanahally K D, Tomai T, Unemoto A, Honma I 2012 Nano Lett. 12 1146

    [19]

    Moriya M, Miyahara M, Hokazono M, Sasaki H, Nemoto A, Katayama S, Akimoto Y, Hirano S 2014 J. Electrochem. Soc. 161 A97

    [20]

    Deng C, Zhang S, Yang S Y 2009 J. Alloys Compd. 487 L18

    [21]

    Gong Z L, Li Y X, Yang Y 2006 Electrochem. Solid-State Lett. 9 A542

    [22]

    Liu W G, Xu Y H, Yang R, Ren B 2010 Hot Working Technol. 39 21 (in Chinese) [刘文刚, 许云华, 杨蓉, 任冰 2010 热加工工艺 39 21]

    [23]

    Choi S, Kim S J, Yun Y J, Lee S S, Choi S Y, Jung H K 2013 Mater. Lett. 105 113

    [24]

    Deng C, Zhang S, Wu Y X, Zhao B D 2014 J. Electroanal. Chem. 719 150

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [28]

    Dominko R, Bele M, Gaberšcek M, Meden A, Remškar M, Jamnik J 2006 Electrochem. Commun. 8 217

    [29]

    Kuganathan N, Islam M S 2009 Chem. Mater. 21 5196

    [30]

    Zhang S, Lin Z, Ji L W, Li Y, Xu G J, Xue L G, Li S, Lu Y, Toprakci O, Zhang X W 2012 J. Mater. Chem. 22 14661

    [31]

    Belharouak I, Abouimrane A, Amine K 2009 J. Phys. Chem. C 113 20733

    [32]

    Lee H, Park S D, Moon J, Lee H, Cho K, Cho M, Kim S Y 2014 Chem. Mater. 26 3896

    [33]

    Chen R Y, Heinzmann R, Mangold S, Chakravadhanula K, Hahn H, Indris S 2013 J. Phys. Chem. C 117 884

    [34]

    Longo R C, Xiong K, KC S, Cho K 2014 Electrochim. Acta 121 434

    [35]

    Zhang P, Zheng Y, Yu S, Wu S Q, Wen Y H, Zhu Z Z, Yang Y 2013 Electrochim. Acta 111 172

    [36]

    Aydinol M K, Kohan A F, Ceder G 1997 Phys. Rev. B 56 1354

    [37]

    Osnis A, Kosa M, Aurbach D, Major D T 2013 J. Phys. Chem. C 117 17919

    [38]

    Shao B, Abe Y, Taniguchi I 2013 Powder Technol. 235 1

  • [1] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [2] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [3] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [4] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [5] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [6] Cheng Chao-Qun, Li Gang, Zhang Wen-Dong, Li Peng-Wei, Hu Jie, Sang Sheng-Bo, Deng Xiao. Electronic structures and optical properties of boron and phosphorus doped β-Si3N4. Acta Physica Sinica, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [7] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [8] Wang Yong-Zhen, Xu Zhao-Peng, Zhang Wen-Xiu, Zhang Xin, Wang Qian, Zhang Lei. First-principles study on the effect of Ge-doping on the conductivity of InI. Acta Physica Sinica, 2014, 63(23): 237101. doi: 10.7498/aps.63.237101
    [9] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [10] Liu Wei-Jie, Sun Zheng-Hao, Huang Yu-Xin, Leng Jing, Cui Hai-Ning. Electronic structures and optical properties of rare earth element (Yb) with different valences doped in ZnO. Acta Physica Sinica, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [11] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [12] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [13] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [14] Hou Qing-Yu, Zao Chun-Wang, Li Ji-Jun, Wang Gang. Frist principles study of effect of high Al doping concentrationof p-type ZnO on electric conductivity performance. Acta Physica Sinica, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [15] Le Ling-Cong, Ma Xin-Guo, Tang Hao, Wang Yang, Li Xiang, Jiang Jian-Jun. Electronic structure and optical properties of transition metal doped titanate nanotubes. Acta Physica Sinica, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [16] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun, Guan Yu-Qin, Lin Lin, Li Ji-Jun. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist-principles. Acta Physica Sinica, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [17] Hu Zhi-Gang, Duan Man-Yi, Xu Ming, Zhou Xun, Chen Qing-Yun, Dong Cheng-Jun, Linghu Rong-Feng. Electronic structure and optical properties of ZnO doped with Fe and Ni. Acta Physica Sinica, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [18] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [19] Shen Yi-Bin, Zhou Xun, Xu Ming, Ding Ying-Chun, Duan Man-Yi, Linghu Rong-Feng, Zhu Wen-Jun. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [20] Zhang Jia-Hong, Ma Rong, Liu Su, Liu Mei. First-principles calculations on the superconductivity and magnetism of doping MgCNi3. Acta Physica Sinica, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
Metrics
  • Abstract views:  7196
  • PDF Downloads:  544
  • Cited By: 0
Publishing process
  • Received Date:  28 October 2014
  • Accepted Date:  30 November 2014
  • Published Online:  05 April 2015

/

返回文章
返回
Baidu
map