Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13)

Qi Yu-Min Chen Heng-Li Jin Peng Lu Hong-Yan Cui Chun-Xiang

Citation:

First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13)

Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Potassium hexatitanate (K2Ti6O13) is a kind of wide band-gap semiconductor material with potential applications in photocatalysis. Unfortunately, it only responds to the short wavelengths of ultraviolet light, which seriously limits the utilization efficiency of solar energy. To extend its response to visible light, a promising strategy is to partly substitute some other transition metals for the Ti element. In this work, the electronic structures and optical properties of Mn-and Cu-doped K2Ti6O13 are systematically investigated by the first-principles calculations with the aid of the CASTEP module in the Materials Studio software package. The PW91 exchange-correlation functional is used with a plane wave basis set up to a 340 eV cutoff. The computational results show that the Mn-and Cu-doped K2Ti6O13 have impurity bands mainly stemming from the mix of Mn or Cu 3d states with Ti 3d states and O 2p states. Compared with the band gap of pristine K2Ti6O13 (2.834 eV), the band gap of Mn-doped one becomes narrow (2.724 eV), and its impurity energy level in the middle of the band gap can be used as a bridge for electronic transitions to facilitate the absorption of visible light. Although the band gap of Cu-doped K2Ti6O13 slightly increases (2.873 eV), it could be greatly narrowed (1.886 eV) when taking into consideration the impurity energy levels closely connected to the valence band. In addition, the impurity energy levels may form a shallow acceptor and suppress the carrier recombination in the Cu-doped K2Ti6O13. As usual, the calculated imaginary part of dielectric function as a function of photon energy shows that the ε2(ω) value is nearly zero for pure K2Ti6O13 when the photon energy is less than 3.5 eV, whereas there are finite values and also some peaks for the Mn-and Cu-doped ones. These peaks may originate from the impurity energy levels, whose occurrence makes the electron excitation occur readily by low photon energy. Thus, the absorption edges in the doped ones can red-shift to the visible-light region with enhancing absorption intensity. Finally, the simulated absorption spectra of the pristine and doped K2Ti6O13 are consistent with their electronic structures, which further confirms the above analysis. All the results show that the Cu-doped K2Ti6O13 exhibits higher visible-light photocatalytic efficiency than the Mn-doped one. The current work demonstrates that the absorption of visible light can be realized by the Mn or Cu doped potassium hexatitanate, with the effect of the latter being better than that of the former. The obtained conclusions are of great significance for understanding and further developing the potential applications of K2Ti6O13 in the field of photocatalysis.
      Corresponding author: Lu Hong-Yan, luhongyan2006@gmail.com;hutcui@hebut.edu.cn ; Cui Chun-Xiang, luhongyan2006@gmail.com;hutcui@hebut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574108, 21103224) and the Key Project of Natural Science Foundation of Hebei Province, China (Grant No. E2016202406).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Su J, Lin Z, Chen G 2016 Appl. Catal. B:Environ. 186 127

    [3]

    Li C, Chen G, Sun J, Rao J, Han Z, Hu Y, Xing W, Zhang C 2016 Appl. Catal. B:Environ. 188 39

    [4]

    Lou S, Jia X, Wang Y, Zhou S 2015 Appl. Catal. B:Environ. 176 586

    [5]

    He Y R, Yan F F, Yu H Q, Yuan S J, Tong Z H, Sheng G P 2014 Appl. Energ. 113 164

    [6]

    Osterloh F E 2008 Chem. Mater. 20 35

    [7]

    Ran J, Zhang J, Yu J, Jaroniec M, Qiao S Z 2014 Chem. Soc. Rev. 43 7787

    [8]

    Zhao Z, Liu Q 2008 J. Phys. D:Appl. Phys. 41 025105

    [9]

    Tian Z, Liang C, Liu J, Zhang H, Zhang L 2011 J. Mater. Chem. 21 18242

    [10]

    Li D, Haneda H 2003 Chemosphere 51 129

    [11]

    Zhu J, Chen F, Zhang J, Chen H, Anpo M 2006 J. Photochem. Photobiol. A:Chem. 180 196

    [12]

    Qin L Z, Liang H, Liao B, Liu A D, Wu X Y, Sun J 2013 Nucl. Instrum. Meth. Phys. Res. Sect. B 307 385

    [13]

    Guo M, Du J 2012 Phys. Rev. B:Condens. Matter 407 1003

    [14]

    Impellizzeri G, Scuderi V, Romano L, Sberna P M, Arcadipane E, Sanz R, Scuderi M, Nicotra G, Bayle M, Carles R 2014 J. Appl. Phys. 116 173507

    [15]

    Liu G, Yang H G, Wang X, Cheng L, Pan J, Lu G Q, Cheng H M 2009 J. Am. Chem. Soc. 131 12868

    [16]

    Pan J H, Zhang X, Du A J, Sun D D, Leckie J O 2008 J. Am. Chem. Soc. 130 11256

    [17]

    Wang D H, Jia L, Wu X L, Lu L Q, Xu A W 2012 Nanoscale 4 576

    [18]

    Zhang K, Wang X, Guo X, He T, Feng Y 2014 J. Nanopart. Res. 16 2246

    [19]

    Zhang R, Wang Q, Liang J, Li Q, Dai J, Li W 2012 Phys. B:Condens. Matter 407 2709

    [20]

    Anpo M, Takeuchi M 2003 J. Catal. 216 505

    [21]

    Fujii H, Inata K, Ohtaki M, Eguchi K, Arai H 2001 J. Mater. Sci. 36 527

    [22]

    Hakuta Y, Hayashi H, Arai K 2004 J. Mater. Sci. 39 4977

    [23]

    Kapusuz D, Kalay Y E, Park J, Ozturk A 2015 J. Ceram. Process. Res. 16 291

    [24]

    Li Y, Yu H, Yang Y, Zheng F, Ni H, Zhang M, Guo M 2016 Ceram. Int. 42 11294

    [25]

    Xie J, Lu X, Zhu Y, Liu C, Bao N, Feng X 2003 J. Mater. Sci. 38 3641

    [26]

    Murakami R, Matsui K 1996 Wear 201 193

    [27]

    Han P D, Liang J, Yu Y, Bao H Q, Liu X G, Xu B S 2005 Rare Metal Mat. Eng. 34 56 (in Chinese) [韩培德, 梁建, 余愿, 鲍慧强, 刘旭光, 许并社 2005 稀有金属材料与工程 34 56]

    [28]

    RamíRez-Salgado J, Djurado E, Fabry P 2004 J. Eur. Ceram. Soc. 24 2477

    [29]

    Pescatori M, Quondamcarlo C 2003 Chem. Phys. Lett. 376 726

    [30]

    Du G H, Chen Q, Han P D, Yu Y, Peng L M 2003 Phys. Rev. B 67 035323

    [31]

    Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46

    [32]

    Wu S X, Ma Z, Qin Y N, Qi X Z, Liang Z C 2004 Acta Phys. Chim. Sin. 20 138 (in Chinese) [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成 2004 物理化学学报 20 138]

    [33]

    Deng Q R, Xia X H, Guo M L, Gao Y, Shao G 2011 Mater. Lett. 65 2051

    [34]

    Colón G, Maicu M, Hidalgo M C, Navío J A 2006 Appl. Catal. B:Environ. 67 41

    [35]

    Andersson S, Wadsley A D 1962 Acta Crystallogr. 15 194

    [36]

    Segall M D, Lindan P J D, Probert M, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.:Condens. Matter 21 395502

    [39]

    Hua M, Li Y, Long C, Xia L 2012 Physica B 407 2811

    [40]

    Hua M Y, Li Y M, Li X 2011 J. Synth. Cryst. 40 1573 (in Chinese) [华熳煜, 李益民, 李夏 2011 人工晶体学报 40 1573]

    [41]

    Stampfl C, Walle C G V D 1999 Phys. Rev. B:Condens. Matter 59 5521

    [42]

    Perdew J P, Levy M 1983 Phys. Rev. Lett. 51 1884

    [43]

    Wan H, Xu L, Huang W Q, Huang G F, He C N, Zhou J H, Peng P 2014 Appl. Phys. A 116 741

    [44]

    Yang K, Li D F, Huang W Q, Xu L, Huang G F, Wen S 2017 Appl. Phys. A 123 96

    [45]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 57 3760]

    [46]

    Li J, Zhang Y C, Zhang M 2012 Mater. Lett. 79 136

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Su J, Lin Z, Chen G 2016 Appl. Catal. B:Environ. 186 127

    [3]

    Li C, Chen G, Sun J, Rao J, Han Z, Hu Y, Xing W, Zhang C 2016 Appl. Catal. B:Environ. 188 39

    [4]

    Lou S, Jia X, Wang Y, Zhou S 2015 Appl. Catal. B:Environ. 176 586

    [5]

    He Y R, Yan F F, Yu H Q, Yuan S J, Tong Z H, Sheng G P 2014 Appl. Energ. 113 164

    [6]

    Osterloh F E 2008 Chem. Mater. 20 35

    [7]

    Ran J, Zhang J, Yu J, Jaroniec M, Qiao S Z 2014 Chem. Soc. Rev. 43 7787

    [8]

    Zhao Z, Liu Q 2008 J. Phys. D:Appl. Phys. 41 025105

    [9]

    Tian Z, Liang C, Liu J, Zhang H, Zhang L 2011 J. Mater. Chem. 21 18242

    [10]

    Li D, Haneda H 2003 Chemosphere 51 129

    [11]

    Zhu J, Chen F, Zhang J, Chen H, Anpo M 2006 J. Photochem. Photobiol. A:Chem. 180 196

    [12]

    Qin L Z, Liang H, Liao B, Liu A D, Wu X Y, Sun J 2013 Nucl. Instrum. Meth. Phys. Res. Sect. B 307 385

    [13]

    Guo M, Du J 2012 Phys. Rev. B:Condens. Matter 407 1003

    [14]

    Impellizzeri G, Scuderi V, Romano L, Sberna P M, Arcadipane E, Sanz R, Scuderi M, Nicotra G, Bayle M, Carles R 2014 J. Appl. Phys. 116 173507

    [15]

    Liu G, Yang H G, Wang X, Cheng L, Pan J, Lu G Q, Cheng H M 2009 J. Am. Chem. Soc. 131 12868

    [16]

    Pan J H, Zhang X, Du A J, Sun D D, Leckie J O 2008 J. Am. Chem. Soc. 130 11256

    [17]

    Wang D H, Jia L, Wu X L, Lu L Q, Xu A W 2012 Nanoscale 4 576

    [18]

    Zhang K, Wang X, Guo X, He T, Feng Y 2014 J. Nanopart. Res. 16 2246

    [19]

    Zhang R, Wang Q, Liang J, Li Q, Dai J, Li W 2012 Phys. B:Condens. Matter 407 2709

    [20]

    Anpo M, Takeuchi M 2003 J. Catal. 216 505

    [21]

    Fujii H, Inata K, Ohtaki M, Eguchi K, Arai H 2001 J. Mater. Sci. 36 527

    [22]

    Hakuta Y, Hayashi H, Arai K 2004 J. Mater. Sci. 39 4977

    [23]

    Kapusuz D, Kalay Y E, Park J, Ozturk A 2015 J. Ceram. Process. Res. 16 291

    [24]

    Li Y, Yu H, Yang Y, Zheng F, Ni H, Zhang M, Guo M 2016 Ceram. Int. 42 11294

    [25]

    Xie J, Lu X, Zhu Y, Liu C, Bao N, Feng X 2003 J. Mater. Sci. 38 3641

    [26]

    Murakami R, Matsui K 1996 Wear 201 193

    [27]

    Han P D, Liang J, Yu Y, Bao H Q, Liu X G, Xu B S 2005 Rare Metal Mat. Eng. 34 56 (in Chinese) [韩培德, 梁建, 余愿, 鲍慧强, 刘旭光, 许并社 2005 稀有金属材料与工程 34 56]

    [28]

    RamíRez-Salgado J, Djurado E, Fabry P 2004 J. Eur. Ceram. Soc. 24 2477

    [29]

    Pescatori M, Quondamcarlo C 2003 Chem. Phys. Lett. 376 726

    [30]

    Du G H, Chen Q, Han P D, Yu Y, Peng L M 2003 Phys. Rev. B 67 035323

    [31]

    Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46

    [32]

    Wu S X, Ma Z, Qin Y N, Qi X Z, Liang Z C 2004 Acta Phys. Chim. Sin. 20 138 (in Chinese) [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成 2004 物理化学学报 20 138]

    [33]

    Deng Q R, Xia X H, Guo M L, Gao Y, Shao G 2011 Mater. Lett. 65 2051

    [34]

    Colón G, Maicu M, Hidalgo M C, Navío J A 2006 Appl. Catal. B:Environ. 67 41

    [35]

    Andersson S, Wadsley A D 1962 Acta Crystallogr. 15 194

    [36]

    Segall M D, Lindan P J D, Probert M, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.:Condens. Matter 21 395502

    [39]

    Hua M, Li Y, Long C, Xia L 2012 Physica B 407 2811

    [40]

    Hua M Y, Li Y M, Li X 2011 J. Synth. Cryst. 40 1573 (in Chinese) [华熳煜, 李益民, 李夏 2011 人工晶体学报 40 1573]

    [41]

    Stampfl C, Walle C G V D 1999 Phys. Rev. B:Condens. Matter 59 5521

    [42]

    Perdew J P, Levy M 1983 Phys. Rev. Lett. 51 1884

    [43]

    Wan H, Xu L, Huang W Q, Huang G F, He C N, Zhou J H, Peng P 2014 Appl. Phys. A 116 741

    [44]

    Yang K, Li D F, Huang W Q, Xu L, Huang G F, Wen S 2017 Appl. Phys. A 123 96

    [45]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 57 3760]

    [46]

    Li J, Zhang Y C, Zhang M 2012 Mater. Lett. 79 136

  • [1] Lin Hong-Bin, Lin Chun, Chen Yue, Zhong Ke-Hua, Zhang Jian-Min, Xu Gui-Gui, Huang Zhi-Gao. First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO2 cathode material. Acta Physica Sinica, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [2] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [3] Ding Chao, Li Wei1\2\3, Liu Ju-Yan, Wang Lin-Lin, Cai Yun, Pan Pei-Feng. First principle study of electronic structure of Sb, S Co-doped SnO2. Acta Physica Sinica, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [5] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [6] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [7] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [8] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [9] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [11] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhao Chun-Wang, Zhang Bing. First-principles study on the electronic structures and absorption spectra of Sm-N codoped anatase TiO2. Acta Physica Sinica, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [12] Hou Qing-Yu, Ma Wen, Ying Chun. First principles study of effects of the concentration of Ga/N highly doped p-type ZnO on electric conductivity performance and red shift. Acta Physica Sinica, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [13] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] Zhang Yun, Shao Xiao-Hong, Wang Zhi-Qiang. A first principle study on p-type doped 3C-SiC. Acta Physica Sinica, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [15] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun, Guan Yu-Qin, Lin Lin, Li Ji-Jun. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist-principles. Acta Physica Sinica, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [17] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [18] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
Metrics
  • Abstract views:  8370
  • PDF Downloads:  499
  • Cited By: 0
Publishing process
  • Received Date:  01 November 2017
  • Accepted Date:  04 January 2018
  • Published Online:  20 March 2019

/

返回文章
返回
Baidu
map