-
Potassium hexatitanate (K2Ti6O13) is a kind of wide band-gap semiconductor material with potential applications in photocatalysis. Unfortunately, it only responds to the short wavelengths of ultraviolet light, which seriously limits the utilization efficiency of solar energy. To extend its response to visible light, a promising strategy is to partly substitute some other transition metals for the Ti element. In this work, the electronic structures and optical properties of Mn-and Cu-doped K2Ti6O13 are systematically investigated by the first-principles calculations with the aid of the CASTEP module in the Materials Studio software package. The PW91 exchange-correlation functional is used with a plane wave basis set up to a 340 eV cutoff. The computational results show that the Mn-and Cu-doped K2Ti6O13 have impurity bands mainly stemming from the mix of Mn or Cu 3d states with Ti 3d states and O 2p states. Compared with the band gap of pristine K2Ti6O13 (2.834 eV), the band gap of Mn-doped one becomes narrow (2.724 eV), and its impurity energy level in the middle of the band gap can be used as a bridge for electronic transitions to facilitate the absorption of visible light. Although the band gap of Cu-doped K2Ti6O13 slightly increases (2.873 eV), it could be greatly narrowed (1.886 eV) when taking into consideration the impurity energy levels closely connected to the valence band. In addition, the impurity energy levels may form a shallow acceptor and suppress the carrier recombination in the Cu-doped K2Ti6O13. As usual, the calculated imaginary part of dielectric function as a function of photon energy shows that the ε2(ω) value is nearly zero for pure K2Ti6O13 when the photon energy is less than 3.5 eV, whereas there are finite values and also some peaks for the Mn-and Cu-doped ones. These peaks may originate from the impurity energy levels, whose occurrence makes the electron excitation occur readily by low photon energy. Thus, the absorption edges in the doped ones can red-shift to the visible-light region with enhancing absorption intensity. Finally, the simulated absorption spectra of the pristine and doped K2Ti6O13 are consistent with their electronic structures, which further confirms the above analysis. All the results show that the Cu-doped K2Ti6O13 exhibits higher visible-light photocatalytic efficiency than the Mn-doped one. The current work demonstrates that the absorption of visible light can be realized by the Mn or Cu doped potassium hexatitanate, with the effect of the latter being better than that of the former. The obtained conclusions are of great significance for understanding and further developing the potential applications of K2Ti6O13 in the field of photocatalysis.
-
Keywords:
- first-principles /
- doping /
- electronic structures /
- red-shift
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Su J, Lin Z, Chen G 2016 Appl. Catal. B:Environ. 186 127
[3] Li C, Chen G, Sun J, Rao J, Han Z, Hu Y, Xing W, Zhang C 2016 Appl. Catal. B:Environ. 188 39
[4] Lou S, Jia X, Wang Y, Zhou S 2015 Appl. Catal. B:Environ. 176 586
[5] He Y R, Yan F F, Yu H Q, Yuan S J, Tong Z H, Sheng G P 2014 Appl. Energ. 113 164
[6] Osterloh F E 2008 Chem. Mater. 20 35
[7] Ran J, Zhang J, Yu J, Jaroniec M, Qiao S Z 2014 Chem. Soc. Rev. 43 7787
[8] Zhao Z, Liu Q 2008 J. Phys. D:Appl. Phys. 41 025105
[9] Tian Z, Liang C, Liu J, Zhang H, Zhang L 2011 J. Mater. Chem. 21 18242
[10] Li D, Haneda H 2003 Chemosphere 51 129
[11] Zhu J, Chen F, Zhang J, Chen H, Anpo M 2006 J. Photochem. Photobiol. A:Chem. 180 196
[12] Qin L Z, Liang H, Liao B, Liu A D, Wu X Y, Sun J 2013 Nucl. Instrum. Meth. Phys. Res. Sect. B 307 385
[13] Guo M, Du J 2012 Phys. Rev. B:Condens. Matter 407 1003
[14] Impellizzeri G, Scuderi V, Romano L, Sberna P M, Arcadipane E, Sanz R, Scuderi M, Nicotra G, Bayle M, Carles R 2014 J. Appl. Phys. 116 173507
[15] Liu G, Yang H G, Wang X, Cheng L, Pan J, Lu G Q, Cheng H M 2009 J. Am. Chem. Soc. 131 12868
[16] Pan J H, Zhang X, Du A J, Sun D D, Leckie J O 2008 J. Am. Chem. Soc. 130 11256
[17] Wang D H, Jia L, Wu X L, Lu L Q, Xu A W 2012 Nanoscale 4 576
[18] Zhang K, Wang X, Guo X, He T, Feng Y 2014 J. Nanopart. Res. 16 2246
[19] Zhang R, Wang Q, Liang J, Li Q, Dai J, Li W 2012 Phys. B:Condens. Matter 407 2709
[20] Anpo M, Takeuchi M 2003 J. Catal. 216 505
[21] Fujii H, Inata K, Ohtaki M, Eguchi K, Arai H 2001 J. Mater. Sci. 36 527
[22] Hakuta Y, Hayashi H, Arai K 2004 J. Mater. Sci. 39 4977
[23] Kapusuz D, Kalay Y E, Park J, Ozturk A 2015 J. Ceram. Process. Res. 16 291
[24] Li Y, Yu H, Yang Y, Zheng F, Ni H, Zhang M, Guo M 2016 Ceram. Int. 42 11294
[25] Xie J, Lu X, Zhu Y, Liu C, Bao N, Feng X 2003 J. Mater. Sci. 38 3641
[26] Murakami R, Matsui K 1996 Wear 201 193
[27] Han P D, Liang J, Yu Y, Bao H Q, Liu X G, Xu B S 2005 Rare Metal Mat. Eng. 34 56 (in Chinese) [韩培德, 梁建, 余愿, 鲍慧强, 刘旭光, 许并社 2005 稀有金属材料与工程 34 56]
[28] RamíRez-Salgado J, Djurado E, Fabry P 2004 J. Eur. Ceram. Soc. 24 2477
[29] Pescatori M, Quondamcarlo C 2003 Chem. Phys. Lett. 376 726
[30] Du G H, Chen Q, Han P D, Yu Y, Peng L M 2003 Phys. Rev. B 67 035323
[31] Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46
[32] Wu S X, Ma Z, Qin Y N, Qi X Z, Liang Z C 2004 Acta Phys. Chim. Sin. 20 138 (in Chinese) [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成 2004 物理化学学报 20 138]
[33] Deng Q R, Xia X H, Guo M L, Gao Y, Shao G 2011 Mater. Lett. 65 2051
[34] Colón G, Maicu M, Hidalgo M C, Navío J A 2006 Appl. Catal. B:Environ. 67 41
[35] Andersson S, Wadsley A D 1962 Acta Crystallogr. 15 194
[36] Segall M D, Lindan P J D, Probert M, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717
[37] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.:Condens. Matter 21 395502
[39] Hua M, Li Y, Long C, Xia L 2012 Physica B 407 2811
[40] Hua M Y, Li Y M, Li X 2011 J. Synth. Cryst. 40 1573 (in Chinese) [华熳煜, 李益民, 李夏 2011 人工晶体学报 40 1573]
[41] Stampfl C, Walle C G V D 1999 Phys. Rev. B:Condens. Matter 59 5521
[42] Perdew J P, Levy M 1983 Phys. Rev. Lett. 51 1884
[43] Wan H, Xu L, Huang W Q, Huang G F, He C N, Zhou J H, Peng P 2014 Appl. Phys. A 116 741
[44] Yang K, Li D F, Huang W Q, Xu L, Huang G F, Wen S 2017 Appl. Phys. A 123 96
[45] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 57 3760]
[46] Li J, Zhang Y C, Zhang M 2012 Mater. Lett. 79 136
-
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Su J, Lin Z, Chen G 2016 Appl. Catal. B:Environ. 186 127
[3] Li C, Chen G, Sun J, Rao J, Han Z, Hu Y, Xing W, Zhang C 2016 Appl. Catal. B:Environ. 188 39
[4] Lou S, Jia X, Wang Y, Zhou S 2015 Appl. Catal. B:Environ. 176 586
[5] He Y R, Yan F F, Yu H Q, Yuan S J, Tong Z H, Sheng G P 2014 Appl. Energ. 113 164
[6] Osterloh F E 2008 Chem. Mater. 20 35
[7] Ran J, Zhang J, Yu J, Jaroniec M, Qiao S Z 2014 Chem. Soc. Rev. 43 7787
[8] Zhao Z, Liu Q 2008 J. Phys. D:Appl. Phys. 41 025105
[9] Tian Z, Liang C, Liu J, Zhang H, Zhang L 2011 J. Mater. Chem. 21 18242
[10] Li D, Haneda H 2003 Chemosphere 51 129
[11] Zhu J, Chen F, Zhang J, Chen H, Anpo M 2006 J. Photochem. Photobiol. A:Chem. 180 196
[12] Qin L Z, Liang H, Liao B, Liu A D, Wu X Y, Sun J 2013 Nucl. Instrum. Meth. Phys. Res. Sect. B 307 385
[13] Guo M, Du J 2012 Phys. Rev. B:Condens. Matter 407 1003
[14] Impellizzeri G, Scuderi V, Romano L, Sberna P M, Arcadipane E, Sanz R, Scuderi M, Nicotra G, Bayle M, Carles R 2014 J. Appl. Phys. 116 173507
[15] Liu G, Yang H G, Wang X, Cheng L, Pan J, Lu G Q, Cheng H M 2009 J. Am. Chem. Soc. 131 12868
[16] Pan J H, Zhang X, Du A J, Sun D D, Leckie J O 2008 J. Am. Chem. Soc. 130 11256
[17] Wang D H, Jia L, Wu X L, Lu L Q, Xu A W 2012 Nanoscale 4 576
[18] Zhang K, Wang X, Guo X, He T, Feng Y 2014 J. Nanopart. Res. 16 2246
[19] Zhang R, Wang Q, Liang J, Li Q, Dai J, Li W 2012 Phys. B:Condens. Matter 407 2709
[20] Anpo M, Takeuchi M 2003 J. Catal. 216 505
[21] Fujii H, Inata K, Ohtaki M, Eguchi K, Arai H 2001 J. Mater. Sci. 36 527
[22] Hakuta Y, Hayashi H, Arai K 2004 J. Mater. Sci. 39 4977
[23] Kapusuz D, Kalay Y E, Park J, Ozturk A 2015 J. Ceram. Process. Res. 16 291
[24] Li Y, Yu H, Yang Y, Zheng F, Ni H, Zhang M, Guo M 2016 Ceram. Int. 42 11294
[25] Xie J, Lu X, Zhu Y, Liu C, Bao N, Feng X 2003 J. Mater. Sci. 38 3641
[26] Murakami R, Matsui K 1996 Wear 201 193
[27] Han P D, Liang J, Yu Y, Bao H Q, Liu X G, Xu B S 2005 Rare Metal Mat. Eng. 34 56 (in Chinese) [韩培德, 梁建, 余愿, 鲍慧强, 刘旭光, 许并社 2005 稀有金属材料与工程 34 56]
[28] RamíRez-Salgado J, Djurado E, Fabry P 2004 J. Eur. Ceram. Soc. 24 2477
[29] Pescatori M, Quondamcarlo C 2003 Chem. Phys. Lett. 376 726
[30] Du G H, Chen Q, Han P D, Yu Y, Peng L M 2003 Phys. Rev. B 67 035323
[31] Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46
[32] Wu S X, Ma Z, Qin Y N, Qi X Z, Liang Z C 2004 Acta Phys. Chim. Sin. 20 138 (in Chinese) [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成 2004 物理化学学报 20 138]
[33] Deng Q R, Xia X H, Guo M L, Gao Y, Shao G 2011 Mater. Lett. 65 2051
[34] Colón G, Maicu M, Hidalgo M C, Navío J A 2006 Appl. Catal. B:Environ. 67 41
[35] Andersson S, Wadsley A D 1962 Acta Crystallogr. 15 194
[36] Segall M D, Lindan P J D, Probert M, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717
[37] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.:Condens. Matter 21 395502
[39] Hua M, Li Y, Long C, Xia L 2012 Physica B 407 2811
[40] Hua M Y, Li Y M, Li X 2011 J. Synth. Cryst. 40 1573 (in Chinese) [华熳煜, 李益民, 李夏 2011 人工晶体学报 40 1573]
[41] Stampfl C, Walle C G V D 1999 Phys. Rev. B:Condens. Matter 59 5521
[42] Perdew J P, Levy M 1983 Phys. Rev. Lett. 51 1884
[43] Wan H, Xu L, Huang W Q, Huang G F, He C N, Zhou J H, Peng P 2014 Appl. Phys. A 116 741
[44] Yang K, Li D F, Huang W Q, Xu L, Huang G F, Wen S 2017 Appl. Phys. A 123 96
[45] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 57 3760]
[46] Li J, Zhang Y C, Zhang M 2012 Mater. Lett. 79 136
Catalog
Metrics
- Abstract views: 8370
- PDF Downloads: 499
- Cited By: 0