-
A novel double-gate strained Si metal-oxide-semiconductor field-effect transistor (MOSFET), in which the top and bottom gates consist of three laterally contacting materials with different work functions, is proposed in this paper. The two-dimensional (2D) analytical models for the surface potential, surface electric field and threshold voltage are presented. The effects of Ge fraction on surface potential, surface electric field and threshold voltage are investigated. The effects of the triple-material length ratio on threshold voltage and drain induced barrier lowering are discussed. The characteristics of the device are studied by comparing with those of the single-material double-gate MOSFETs. The results show that the structure can increase the carrier transport speed and suppress the drain induced barrier lowering effect. The three-material gate length ratio is optimized to minimize short-channel effect and drain induced barrier lowering effect.
-
Keywords:
- strained Si /
- metal-oxide-semiconductor field-effect transistors /
- surface potential /
- threshold voltage
[1] Murali R, Austin B L, Wang L 2004 IEEE Trans. Electron Dev. 51 940
[2] [3] He J, Chan M, Xi X M 2006 Chin. J. Semicond. 27 388
[4] [5] Chiage T K, Chen M L 2007 Solid State Electron. 51 387
[6] Ade O C, Franeiseo J, Garcia S, Juan M 2007 Trans. Electron Dev. 54 131
[7] [8] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Chin. Phys. B 19 107302
[9] [10] [11] Long W, Chin K K 1997 Tech. Dig.-Int. Electron Devices Meet. 549
[12] [13] Reddy G V, Kumar M J 2005 IEEE Trans. Nanotechnol. 4 260
[14] Luan S Z, Liu H X, Jia R X, Cai N Q 2008 Acta Phys. Sin. 57 3807 (in Chinese)[栾苏珍, 刘红侠, 贾仁需, 蔡乃琼 2008 57 3807]
[15] [16] [17] Razavi P, Orouji A A 2008 International Conference on Advances in Electronics and Mic-electronics Valenia, Spain, September 29-October 4, 2008 p11
[18] Pramod K T, Sarvesh D, Manjeet S, Jit S 2010 J. Appl. Phys. 108 074508
[19] [20] Sarvesh D, Dheeraj G, Pramod K T, Jit S 2011 J. Nano-Electron. Phys. 3 576
[21] [22] [23] Venkataraman V, Nawal S, Kummer M J 2007 IEEE Trans. Electron Dev. 54 554
[24] [25] Kummer M J, Venkataraman V, Nawal S 2006 IEEE Trans. Electron Dev. 53 364
-
[1] Murali R, Austin B L, Wang L 2004 IEEE Trans. Electron Dev. 51 940
[2] [3] He J, Chan M, Xi X M 2006 Chin. J. Semicond. 27 388
[4] [5] Chiage T K, Chen M L 2007 Solid State Electron. 51 387
[6] Ade O C, Franeiseo J, Garcia S, Juan M 2007 Trans. Electron Dev. 54 131
[7] [8] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Chin. Phys. B 19 107302
[9] [10] [11] Long W, Chin K K 1997 Tech. Dig.-Int. Electron Devices Meet. 549
[12] [13] Reddy G V, Kumar M J 2005 IEEE Trans. Nanotechnol. 4 260
[14] Luan S Z, Liu H X, Jia R X, Cai N Q 2008 Acta Phys. Sin. 57 3807 (in Chinese)[栾苏珍, 刘红侠, 贾仁需, 蔡乃琼 2008 57 3807]
[15] [16] [17] Razavi P, Orouji A A 2008 International Conference on Advances in Electronics and Mic-electronics Valenia, Spain, September 29-October 4, 2008 p11
[18] Pramod K T, Sarvesh D, Manjeet S, Jit S 2010 J. Appl. Phys. 108 074508
[19] [20] Sarvesh D, Dheeraj G, Pramod K T, Jit S 2011 J. Nano-Electron. Phys. 3 576
[21] [22] [23] Venkataraman V, Nawal S, Kummer M J 2007 IEEE Trans. Electron Dev. 54 554
[24] [25] Kummer M J, Venkataraman V, Nawal S 2006 IEEE Trans. Electron Dev. 53 364
Catalog
Metrics
- Abstract views: 6331
- PDF Downloads: 536
- Cited By: 0