-
分析研究了应变绝缘层上硅锗p型金属氧化物场效应晶体管(SGOI pMOSFET)的阈值电压模型,修正了应变作用下SGOI pMOSFET的能带模型,并提取了主要的物理参量.这些典型的参量包括禁带宽度、电子亲和能、内建势等.给出了应变硅SGOI pMOSFET内部电势分布的二维泊松方程,通过边界条件求解方程,得出了准确的阈值电压模型,并且验证了该模型的正确性.
-
关键词:
- 应变硅 /
- 绝缘层上硅锗 /
- p型金属氧化物场效应晶体管 /
- 阈值电压解析模型
This paper investigates the threshold voltage analytic model of strained SiGe-on-insulator p-channel metal-oxide-semiconductor-field-effect-transistor (SGOI pMOSFET), revises the energy band model of strained-silicon, and extracts the main physical parameters of strained-SiGe devices. These parameters include the energy gap, electron affinity, build-up potential, etc. In this paper, the two-dimensional Possions equation of build-in potential in strained silicon SGOI pMOSFET is also presented. By using the boundary conditions to solve these equations, an accurate threshold voltage analytic model is proposed and its validity is verified.-
Keywords:
- strained silicon /
- SiGe-on-insulator /
- p-channel metal-oxide-semiconductor-field-effect-transistor /
- threshold voltage analytic model
[1] Ma X B, Liu W L, Liu X Y, Du X F, Liu Z T, Lin C L, Chu P K 2009 J. Electrochem. Soc. 157 104
[2] Balestra F 2008 Acta Phys. Polon. A 114 945
[3] Minjoo L L, Engene A 2005 J. Appl. Phys. 97 1
[4] Olsen S H, Yan L, Agaiby R, Escobedo C E, ONeill A G, Hellstroem P E, Oestling M, Lyutovich K, Kasper E, Claeys C, Parker E H C 2009 Microelectron. Eng. 86 218
[5] Venkataraman V, Nawal S, Kumar M J 2007 IEEE Trans. Electron Dev. 54 554
[6] Aberg I, Chleirigh C N, Hoyt J L 2006 IEEE Trans. Electron Dev. 53 1021
[7] Toshifumi I, Toshinori N, Tsutomu T 2006 IEEE Trans. Electron Dev. 53 2809
[8] Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827
[9] Luan S Z, Liu H X 2008 Chin. Phys. B 17 3077
[10] Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军、 张鹤鸣、 戴显英、 胡辉勇、 宣荣喜 2008 57 7228]
[11] Jung J W 2009 Current Appl. Phys. 9 47
[12] Lin C N, Yang Y L, Chen W T, Lin S C, Chuang K C, Hwu J G 2008 Microelectron. Eng. 85 1915
[13] Batwani H, Gaur M, Kumar M J 2009 J. Compt. Math. Electr. Electron. Eng. 28 353
[14] Yeh L Y, Liao M H, Chen C H, Wu J, Lee J Y M, Liu C W, Lee T L, Liang M S 2009 IEEE Trans. Electron Dev. 56 2848
-
[1] Ma X B, Liu W L, Liu X Y, Du X F, Liu Z T, Lin C L, Chu P K 2009 J. Electrochem. Soc. 157 104
[2] Balestra F 2008 Acta Phys. Polon. A 114 945
[3] Minjoo L L, Engene A 2005 J. Appl. Phys. 97 1
[4] Olsen S H, Yan L, Agaiby R, Escobedo C E, ONeill A G, Hellstroem P E, Oestling M, Lyutovich K, Kasper E, Claeys C, Parker E H C 2009 Microelectron. Eng. 86 218
[5] Venkataraman V, Nawal S, Kumar M J 2007 IEEE Trans. Electron Dev. 54 554
[6] Aberg I, Chleirigh C N, Hoyt J L 2006 IEEE Trans. Electron Dev. 53 1021
[7] Toshifumi I, Toshinori N, Tsutomu T 2006 IEEE Trans. Electron Dev. 53 2809
[8] Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827
[9] Luan S Z, Liu H X 2008 Chin. Phys. B 17 3077
[10] Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军、 张鹤鸣、 戴显英、 胡辉勇、 宣荣喜 2008 57 7228]
[11] Jung J W 2009 Current Appl. Phys. 9 47
[12] Lin C N, Yang Y L, Chen W T, Lin S C, Chuang K C, Hwu J G 2008 Microelectron. Eng. 85 1915
[13] Batwani H, Gaur M, Kumar M J 2009 J. Compt. Math. Electr. Electron. Eng. 28 353
[14] Yeh L Y, Liao M H, Chen C H, Wu J, Lee J Y M, Liu C W, Lee T L, Liang M S 2009 IEEE Trans. Electron Dev. 56 2848
计量
- 文章访问数: 8667
- PDF下载量: 869
- 被引次数: 0