-
The Cu elements of Cu (In, Ga) Se2 (CIGS) have very important influences on the electrical properties of CIGS absorber and solar cells. In this paper, Cu-poor and Cu-rich absorber layers (0.7 Cu/(Ga+In) (1.15) and solar cells are prepared by evaporation method. The SEM and Hall measurements reveal that Cu-rich material shows superior structural (larger grain size, better crystalline) and electrical (lower resistivity, higher mobility) properties to Cu-poor material. However, I-V tests show that the efficiency of Cu-poor solar cell is better than that of the Cu-rich device. The temperature-dependent I-V tests indicate that electron loss is mainly due to the bulk recombination in Cu-poor solar cell, and the activation energy of recombination is comparable to the band gap energy of Cu-poor solar cell. In contrast, in the Cu-rich devices the recombination at the heterointerface is dominant, and the activation energy is smaller than the band gap energy of the absorber material, which is an important drawback of open circuit voltage. Finally, Cu-poor surface on Cu-rich absorber is prepared by three-stage evaporation process, which reduces the short-circuit current and open-circuit voltage loss and optimizes the performance of CIGS solar cells. The efficiency of CIGS solar cell is achieved to be as high as more than 15%.
-
Keywords:
- Cu(In,Ga)Se2 film solar cell /
- Cu element /
- activation energy /
- open circuit voltage
[1] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt. 19 894
[2] Turcu M, Pakma O, Rau U 2002 Appl. Phys. Lett. 80 2598
[3] Siebenntritt S, Gutay L, Regesch D, Aida Y 2013 Sol. Energy Mater. Sol. Cells 119 18
[4] Monsefi M, Kuo D H 2013 J. Alloys Comp. 580 348
[5] Liu F F, Zhang L, He Q 2013 Acta Phys. Sin. 62 7 (in Chinese) [刘芳芳, 张力, 何青 2013 62 7]
[6] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642
[7] Rau U, Jasenek A, Schock H W, Engelhardt F, Meyer T 2000 Thin Solid Films 361 299
[8] Turcu M C 2003 Ph. D. Dissertation (Dresden: der Technische University)
[9] rerum naturalium 2004 Ph. D. Dissertation (Temesburg, Rumänien)
[10] Liu F F, Sun Y, Zhang L 2009 J. Synth. Cryst. 38 455 (in Chinese) [刘芳芳, 孙云, 何青 2009 人工晶体学报 38 455]
[11] Moller H J 1991 Solar Cells 31 77
-
[1] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt. 19 894
[2] Turcu M, Pakma O, Rau U 2002 Appl. Phys. Lett. 80 2598
[3] Siebenntritt S, Gutay L, Regesch D, Aida Y 2013 Sol. Energy Mater. Sol. Cells 119 18
[4] Monsefi M, Kuo D H 2013 J. Alloys Comp. 580 348
[5] Liu F F, Zhang L, He Q 2013 Acta Phys. Sin. 62 7 (in Chinese) [刘芳芳, 张力, 何青 2013 62 7]
[6] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642
[7] Rau U, Jasenek A, Schock H W, Engelhardt F, Meyer T 2000 Thin Solid Films 361 299
[8] Turcu M C 2003 Ph. D. Dissertation (Dresden: der Technische University)
[9] rerum naturalium 2004 Ph. D. Dissertation (Temesburg, Rumänien)
[10] Liu F F, Sun Y, Zhang L 2009 J. Synth. Cryst. 38 455 (in Chinese) [刘芳芳, 孙云, 何青 2009 人工晶体学报 38 455]
[11] Moller H J 1991 Solar Cells 31 77
Catalog
Metrics
- Abstract views: 7546
- PDF Downloads: 719
- Cited By: 0