-
SiOx films (x=1.3) are deposited on the silicon substrates by electron beam evaporation. The resistive switching behaviors from the device consisting of indium tin oxide (ITO)/SiOx/Si/Al with annealed SiOx layer as the resistive layer are investigated. It is found that on/off ratio of the device increases with the annealing temperature rising. The maximum on/off ratio reaches 109. The analyses of X-ray photoelectron spectrum and electron paramagnetic resonance spectrum reveal that the silicon dangling bonds in different valence states can be formed at different annealing temperatures, which is the main source of the conducting filament pathway. The result of ellipsometer indicates that the increase of refractive index of annealed SiOx film leads to the increase of the resistance of high resistance state.
-
Keywords:
- SiOx films /
- resistive switching /
- silicon dangling bonds /
- heat treatment
[1] Liu C Y, Shih Y R, Huang S J 2013 Solid State Commun. 159 13
[2] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632
[3] Sawa A 2008 Mater. Today 11 28
[4] Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283
[5] Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401
[6] Bardeen J, Brattain W H 1948 Phys. Rev. 74 230
[7] Waser R, Aono M 2007 Nat. Mater. 6 833
[8] Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H, Tsai M J 2008 International Electron Devices Meeting San Francisco, USA, December 15-17, 2008 p1
[9] Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201
[10] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304
[11] Beck A, Bednorz J G, Gerber C, Rossel C, Widmer D 2000 Appl. Phys. Lett. 77 139
[12] Terabe K, Hasegawa T, Nakayama T, Aono M 2005 Nature 433 47
[13] Soni R, Meuffels P, Kohlstedt H, Kugeler C, Waser R 2009 Appl. Phys. Lett. 94 123503
[14] Yao J, Sun Z Z, Zhong L, Douglas N, James M T 2010 Nano Lett. 10 4105
[15] Wang Y F, Qian X Y, Chen K J, Fang Z H, Li W, Xu J 2013 Appl. Phys. Lett. 102 042103
[16] Wang Y Z, Chen Y T, Xue F, Zhou F, Chang Y F, Fowler B, Lee J C 2012 Appl. Phys. Lett. 100 083502
[17] Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 63 067202]
[18] Huang R, Zhang L J, Gao D J, Pan Y, Qin S Q, Tang P, Cai Y M, Wang Y Y 2011 Appl. Phys. A 102 927
[19] Schindler C, Weides M, Kozicki M N, Waser R 2008 Appl. Phys. Lett. 92 122910
[20] Kim H D, An H M, Kim K C, Seo Y, Nam K H, Chung H B, Lee E B, Kim T G 2010 Semicond. Sci. Technol. 25 065002
[21] Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870
[22] Shamekh A M A, Tokuda N, Inokuma T 2011 J. Non-Cryst. Solids 357 981
[23] Holzenkampfer E, Richter F W, Stuke J, Grote U V 1979 J. Non-Cryst. Solids 32 327
[24] Hamann D R 2000 Phys. Rev. B 61 9899
[25] Arndt J, Devine R A B, Revesz A G 1991 J. Non-Cryst. Solids 131 1206
-
[1] Liu C Y, Shih Y R, Huang S J 2013 Solid State Commun. 159 13
[2] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632
[3] Sawa A 2008 Mater. Today 11 28
[4] Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283
[5] Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401
[6] Bardeen J, Brattain W H 1948 Phys. Rev. 74 230
[7] Waser R, Aono M 2007 Nat. Mater. 6 833
[8] Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H, Tsai M J 2008 International Electron Devices Meeting San Francisco, USA, December 15-17, 2008 p1
[9] Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201
[10] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304
[11] Beck A, Bednorz J G, Gerber C, Rossel C, Widmer D 2000 Appl. Phys. Lett. 77 139
[12] Terabe K, Hasegawa T, Nakayama T, Aono M 2005 Nature 433 47
[13] Soni R, Meuffels P, Kohlstedt H, Kugeler C, Waser R 2009 Appl. Phys. Lett. 94 123503
[14] Yao J, Sun Z Z, Zhong L, Douglas N, James M T 2010 Nano Lett. 10 4105
[15] Wang Y F, Qian X Y, Chen K J, Fang Z H, Li W, Xu J 2013 Appl. Phys. Lett. 102 042103
[16] Wang Y Z, Chen Y T, Xue F, Zhou F, Chang Y F, Fowler B, Lee J C 2012 Appl. Phys. Lett. 100 083502
[17] Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 63 067202]
[18] Huang R, Zhang L J, Gao D J, Pan Y, Qin S Q, Tang P, Cai Y M, Wang Y Y 2011 Appl. Phys. A 102 927
[19] Schindler C, Weides M, Kozicki M N, Waser R 2008 Appl. Phys. Lett. 92 122910
[20] Kim H D, An H M, Kim K C, Seo Y, Nam K H, Chung H B, Lee E B, Kim T G 2010 Semicond. Sci. Technol. 25 065002
[21] Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870
[22] Shamekh A M A, Tokuda N, Inokuma T 2011 J. Non-Cryst. Solids 357 981
[23] Holzenkampfer E, Richter F W, Stuke J, Grote U V 1979 J. Non-Cryst. Solids 32 327
[24] Hamann D R 2000 Phys. Rev. B 61 9899
[25] Arndt J, Devine R A B, Revesz A G 1991 J. Non-Cryst. Solids 131 1206
Catalog
Metrics
- Abstract views: 5518
- PDF Downloads: 441
- Cited By: 0