-
To compute the breakdown thresholds of multipactor in microwave devices, a fast single particle Monte-Carlo (SP-MC) method is presented, which considers the random nature of secondary electrons and their initial energies, phases and angles. With Runge-Kutta method and Furman model, the motion of the electron and the secondary electron yield (SEY) of the wall of the device are computed. An effective SEY is regarded as a criterion to estimate whether multipactor occurs, which is computed by averaging the SEYs for all impacts. As an example, the multipactor in a transmission line composed of parallel plates is investigated with the presented SP-MC method, traditional Monte-Carlo method, statistical theory method and particle-in-cell method separately. The results obtained from the SP-MC method accord well with those from the statistical theory method and particle-in-cell method, including the results of the susceptibility zones, break thresholds on specific products of frequency and gap space. Moreover, the SP-MC method is more adaptive than the statistical theory method, more stable than the traditional Monte-Carlo method and much more efficient than the particle-in-cell method.
-
Keywords:
- multipactor /
- single particle Monte-Carlo method /
- parallel plates transmission line /
- susceptibility zone
[1] Farnsworth P 1934 J. Franklin Inst. 218 411
[2] Vaughan J 1988 IEEE Trans. Electron Dev. 35 1172
[3] Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446
[4] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[5] Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110
[6] Lau Y Y, Kishek R A, Gilgenbach R M 1988 IEEE Trans. Plasma Sci. 26 290
[7] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[8] Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399
[9] Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331
[10] Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508
[11] Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗积润2011 60 084103]
[12] Dong Y, Dong Z W, Yang W Y 2011 High Power Laser Particle Beams 23 454 (in Chinese) [董烨, 董志伟, 杨温渊 2011强激光与粒子束 23 454]
[13] Li X Y, Chen C M 2008 Math. Theory Appl. 28 62 (in Chinese) [李夏云, 陈传淼 2008 数学理论与应用28 62]
[14] Rodney J, Vaughan M 1989 IEEE Trans. Electron Dev. 36 1963
[15] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮2013 62 077901]
[16] Nieter C, Cary J R 2004 J. Comput. Phys. 196 448
-
[1] Farnsworth P 1934 J. Franklin Inst. 218 411
[2] Vaughan J 1988 IEEE Trans. Electron Dev. 35 1172
[3] Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446
[4] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[5] Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110
[6] Lau Y Y, Kishek R A, Gilgenbach R M 1988 IEEE Trans. Plasma Sci. 26 290
[7] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[8] Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399
[9] Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331
[10] Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508
[11] Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗积润2011 60 084103]
[12] Dong Y, Dong Z W, Yang W Y 2011 High Power Laser Particle Beams 23 454 (in Chinese) [董烨, 董志伟, 杨温渊 2011强激光与粒子束 23 454]
[13] Li X Y, Chen C M 2008 Math. Theory Appl. 28 62 (in Chinese) [李夏云, 陈传淼 2008 数学理论与应用28 62]
[14] Rodney J, Vaughan M 1989 IEEE Trans. Electron Dev. 36 1963
[15] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮2013 62 077901]
[16] Nieter C, Cary J R 2004 J. Comput. Phys. 196 448
Catalog
Metrics
- Abstract views: 6731
- PDF Downloads: 530
- Cited By: 0