-
Packed bed dielectric barrier discharge (PB-DBD) is extremely popular in plasma catalysis applications, which can significantly improve the selectivity and energy efficiency of the catalytic processes. In order to achieve some complex chemical reactions, it is necessary to mix different materials in practical applications. In this work, based on the two-dimensional particle-in-cell/Monte Carlo collision (PIC/MCC) method, the discharge evolution in PB-DBD packed with two mixed dielectrics is numerically simulated to reveal the discharge characteristics. Due to the polarization of dielectric columns, the enhancement of electric field induces streamers at the bottom of the dielectric columns with high electrical permittivity (εr). The streamers propagate downward in the voids between the dielectric columns with low εr, which finally transitions into volume discharges. Then, a new streamer forms near the upper dielectric plate and propagates downward along the void of the dielectric columns with high εr. Moreover, electron density in between the columns with high εr is lower than that in between the dielectric columns with low εr. In addition, the numbers of e, N2+, O2+ and O2- present different profiles versus time. All of e, N2+ and O2+ increase in number before 0.8 ns. After 0.8 ns, the number of electrons decreases with time, while the numbers of N2+ and O2+ keep almost constant. During the whole process, the number of O2- keeps increasing versus time. The reason for the different temporal profiles can be analyzed as follows. The sum of electrons deposited on the dielectric and those lost in attachment reaction is greater than the number of electrons generated by ionization reaction, resulting in the declining electron trend. Comparatively, the deposition of N2+ and O2+ on the dielectric almost balances with their generation, leading to the constant numbers of N2+ and O2+. In addition, the variation of averaged electron density (ne) and averaged electron temperature (Te) in the voids between the dielectric columns are also analyzed under different experimental parameters. Simulation results indicate that both of them decrease with the increase in pressure or the decrease in voltage amplitude. Moreover, they increase with enlarging dielectric column radius. In addition, ne increases and then decreases with the increase of N2 content in the working gas, while Te monotonically increases. The variations of ne and Te in the voids can be explained as follows. With increasing pressure, the increase of collision frequency and the decrease of average free path lead to less energy obtained per unit time by electrons from the electric field, resulting in the decreasing Te. Moreover, the first Townsend ionization coefficient decreases with a reduction in Te, resulting in less electrons produced per unit time. Hence, both ne and Te decrease with increasing pressure. Additionally, Te is mainly determined by electric field strength. Therefore, the rising voltage amplitude results in the increase of and Te. Based on the same reason with pressure, nealso increases with increasing voltage amplitude. Consequently, both ne and Te increase with increasing voltage amplitude. In addition, the surface area of dielectric columns increases with enlarging dielectric column radius. Therefore, more polarized charges are induced on the inner surface of the dielectric column, inducing a stronger electric field outside. Accordingly, the enlarging dielectric column radius results in the increase of ne and Te. Moreover, the variation of ne with N2 content is analyzed from the ionization rate, and that of Te is obtained from analyzing the ionization thresholds of N2 and O2.
-
Keywords:
- packed bed dielectric barrier discharge /
- particle-in-cell/Monte Carlo collision (PIC/MCC) /
- dynamics /
- streamer
-
[1] Bogaerts A, Kozák T, Van Laer K, Snoeckx R 2015 Faraday Discuss. 183 271
[2] Chen S W, Chen Y, Niu J Q, Liu T Q, Huang J G, Chen H H, Fan X L 2024 Chem. Ind. & Eng. Pro. 1-18 (in Chinese) [陈少伟,陈奕,牛江奇,刘天奇,黄建国,陈焕浩,范晓雷 2024 化工进展 1-18]
[3] Cheng H, Lei X T, Zhang W C, Lu X P 2024 High Volt. Eng. 50 5206 (in Chinese) [程 鹤,雷孝廷,张文超,卢新培 2024 高电压技术 50 5206]
[4] Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203 (in Chinese) [张海宝,陈强 2021 70 095203]
[5] Lee S, Ha J, Li O L 2024 Nanomaterials 14 1313
[6] Li J, Guo Q, Zhao X, Hu Y K, Zhang S Z, Zhao Y, Li S Z 2023 Mol. Catal. 549 113494
[7] Zhang S, Gao Y, Sun H, Fan Z, Shao T 2022 High Volt. 7 e12201
[8] Hu G T, Ma Y C, Hao Q L, Liu D L, Dou B J, Bin F 2024 New J. Chem. 48 2624
[9] Xu W C, Buelens L C, Galvita V V, Bogaerts A, Meynen V 2024 J. CO2 Util. 83 102820
[10] Lv X, Zhang H P, Zhang H, Shao Y Y, Zhu J S 2024 Prog. Coat. 192 108499
[11] Xu S S, Chansai S, Shao Y, Xu S J, Wang Y C, Haigh S, Mu Y B, Jiao Y L, Stere C E, Chen H H, Fan X L, Hardacre C 2020 Appl. Catal. B: Environ. 268 118752
[12] Zhang S, Gao Y, Sun H, Fan Z, Shao T 2021 Plasma Sci. Technol. 23 064007
[13] Michielsen I, Uytdenhouwen Y, Pype J, Michielsen B, Mertens J, Reniers F, Meynen V, Bogaerts A 2017 Chem. Eng. J. 326 477
[14] Van Laer K, Bogaerts A 2017 Plasma Processes Polym. 14 1600129
[15] Lu X P, Fang Z, Dai D, Shao T, Liu F, Zhang C, Liu D W, Nie L L, Jiang C Q 2023 High Volt. 8 1132
[16] Ren C H, Huang B D, Luo Y, Zhang C, Shao T 2023 Plasma Chem. Plasma Process. 43 1613
[17] Li S Q, Liu Y H, Yuan H, Liang J P, Zhang M, Li Y, Yang D Z 2022 Appl. Sci. 12 8895
[18] Gómez-Ramírez A, Montoro-Damas A M, Cotrino J, Lambert R M, González-Elipe A R 2017 Plasma Processes Polym. 14 e1600081
[19] Jiang N, Lu N, Shang K F, Li J, Wu Y 2013 J. Hazardous Mater. 262 387
[20] Engeling K W, Kruszelnicki J, Kushner M J, Foster J E 2018 Plasma Sources Sci. Technol. 27 085002
[21] Wang W Z, Butterworth T, Bogaerts A 2021 J. Phys. D: Appl. Phys. 54 214004
[22] Li Y, Yang D Z, Qiao J J, Zhang L, Wang W Z, Zhao Z L, Zhou X F, Yuan H, Wang W C 2020 Plasma Sources Sci. Technol. 29 055004
[23] Li X C, Zhang L L, Chen K, Ran J X, Pang X X, Jia P Y 2024 IEEE Trans. Plasma Sci. 52 1619
[24] Van Laer K, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 085007
[25] Zhao P, Gu J G, Wang H Y, Zhang Y, Xu X Y, Jiang W 2020 Plasma Sci. Technol. 22 034013
[26] Zhu M, Hu S Y, Wu F F, Ma H, Xie S Y, Zhang C H 2022 J. Phys. D: Appl. Phys. 55 225207
[27] Zhu X B, Hu X L, Wu X Q, Cai Y X, Zhang H B, Tu X 2020 J. Phys. D: Appl. Phys. 53 164002
[28] Jo S, Lee D H, Kang W S, Song Y H 2014 Phys. Plasmas 20 123507
[29] Li J, Zhu S J, Lu K, Ma C H, Yang D Z, Yu F 2021 J. Environ. Chem. Eng. 9 104654
[30] Xiong R X, Zhao P, Wang H Y, Zhang Y, Jiang W 2020 J. Phys. D: Appl. Phys. 53 185202
[31] Gadkari S, Gu S 2018 Phys. Plasmas 25 063513
[32] Mujahid Z, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201
[33] Peng Y, Wang C J, Li J, Gao K Y, Xu H C, Chen C J, Qian M Y, Dong B Y, Wang D Z 2025 Acta Phys. Sin. 74 025202 (in Chinese) [彭毅,汪纯婧,李晶,高凯悦,徐汉城,陈传杰,钱沐杨,董冰岩,王德真 2025 74 025202]
[34] Kourtzanidis, K 2023 Plasma Sources Sci. Technol. 32 105016
[35] Liu J, Zhu X B, Hu X L, Tu X 2022 Plasma Sci. Technol. 24 025503
[36] Kang W S, Kim H H, Teramoto Y, Ogata A, Lee J Y, Kim D W, Hur M, Song Y H 2018 Plasma Sources Sci. Technol. 27 015018
[37] Van Laer K, Bogaerts A 2016 Plasma Sources Sci. Technol. 25 015002
[38] Li S J, Yu X, Dang X Q, Wang P Y, Meng X K, Wang Q, Hou H 2022 J. Clean. Prod. 340 130774
[39] Li S J, Yu X, Dang X Q, Wang P Y, Meng X K, Zheng H C 2022 Plasma Sci. Technol. 24 015504
[40] Gao M X, Zhang Y, Wang H Y, Guo B, Zhang Q Z, Bogaerts A 2018 Catal. 8 248
[41] Zhang Y, Wang H Y, Zhang Y R, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 054002
[42] Zhang Q Z, Zhang L, Yang D Z, Schulze J, Wang Y N, Bogaerts A 2020 Plasma Processes Polym. 18 e2000234
[43] Zuo X, Zhou Y Y, Zhang Q Z, Wang H Y, Li Z H, Zhu J Z, Jiang X W, Zhang Y 2022 Plasma Processes Polym. 19 e2200025
[44] Biagi V8.9 Database. [Online]. 2015 Available: https://www.lxcat.net
[45] Gu J G, Zhang Y, Gao M X, Wang H Y, Zhang Q Z, Yi L, Jiang W 2019 J. Appl. Phys. 125 153303
[46] Zhang Y, Wang H Y, Jiang W, Bogaerts A 2015 New J. Phys. 17 083056
[47] Kuhfeld J, Lepikhin N D, Luggenholscher D, Gzarnetzki U, Donko Z 2023 Plasma Sources Sci. Technol. 32 084001
[48] Shi F, Wang H, Zhu H W 2018 Vacuum & Cryogenics 24 188 (in Chinese) [石峰, 王昊, 朱红伟 2018 真空与低温 24 188]
[49] Zhang L Y, Zhang Q Z, Mujahid Z U, Neuroth C, Berger B, Schulze J 2024 Plasma Sources Sci. Technol. 33 105016
[50] Meierbachtol C S, Greenwood A D, Verboncoeur J P, Shanker B 2015 IEEE Trans. Plasma Sci. 43 3778
[51] Raizer Y P, Kisin V I, Allen J E 1991 Gas Discharge Physics
[52] Naidis G V 2011 Appl. Sci. 38 141501
[53] Rad R H, Brüser V, Schiorlin M, Schäfer J, Brandenburg R 2023 Chem. Eng. J. 456 141072
[54] Mei D H, Zhu X B, He Y L, Yan J D, Tu X 2015 Plasma Sources Sci. Technol. 24 015011
[55] Wang X B, Zhu C Y, Wang L, Liu J Q, Jin A 2022 Radiat. Eff. Defect. S. 177 1117
[56] Zhang X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201 (in Chinese) [张雪雪,贾鹏英,冉俊霞,李金懋,孙焕霞,李雪辰 2024 73 085201]
[57] Cui Z L, Zhou C, Jafarzadeh A, Meng S Y, Yi Y H, Wang Y F, Zhang X X, Hao Y P, Li L C, Bogaerts A 2022 High Volt. 7 1048
[58] Kumar P, Saha S K, Sharma A 2023 Chem. Eng. S. 282 119372
[59] Chachereau A, Pancheshnyi S 2014 IEEE Trans. Plasma Sci. 42 3328
Metrics
- Abstract views: 38
- PDF Downloads: 3
- Cited By: 0