Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Particle-in-cell/Monte Carlo collision simulations of dielectric barrier discharge packed with mixed dielectrics

ZHANG Lulu LI Tianxiang PANG Xuexia GE Yuqi LIU Xiaoqian RAN Junxia LI Qing LI Xuechen

Citation:

Particle-in-cell/Monte Carlo collision simulations of dielectric barrier discharge packed with mixed dielectrics

ZHANG Lulu, LI Tianxiang, PANG Xuexia, GE Yuqi, LIU Xiaoqian, RAN Junxia, LI Qing, LI Xuechen
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Packed bed dielectric barrier discharge (PB-DBD) is extremely popular in plasma catalysis applications, which can significantly improve the selectivity and energy efficiency of the catalytic processes. In order to achieve some complex chemical reactions, it is necessary to mix different materials in practical applications. In this work, by using the two-dimensional particle-in-cell/Monte Carlo collision (PIC/MCC) method, the discharge evolution in PB-DBD packed with two mixed dielectrics is numerically simulated to reveal the discharge characteristics. Due to the polarization of dielectric columns, the enhancement of electric field induces streamers at the bottom of the dielectric columns with high electrical permittivity (εr). The streamers propagate downward in the voids between the dielectric columns with low εr, which finally converts into volume discharges. Then, a new streamer forms near the upper dielectric plate and propagates downward along the void of the dielectric columns with high εr. Moreover, electron density between the columns with high εr is lower than that between the dielectric columns with low εr. In addition, the numbers of e, $ {\text{N}}_{2}^{+} $, $ {\text{O}}_{2}^{+} $ and $ {\text{O}}_{2}^{-} $ present different profiles versus time. All of e, $ {\text{N}}_{2}^{+} $ and $ {\text{O}}_{2}^{+} $ increase in number before 0.8 ns. After 0.8 ns, the number of electrons decreases with time, while the numbers of $ {\text{N}}_{2}^{+} $ and $ {\text{O}}_{2}^{+} $ keep almost constant. In the whole process, the number of $ {\text{O}}_{2}^{-} $ keeps increasing with time increasing. The reason for the different temporal profiles can be analyzed as follows. The sum of electrons deposited on the dielectric and those lost in attachment reaction is greater than the number of electrons generated by ionization reaction, resulting in the declining trend of electrons. Comparatively, the deposition of $ {\text{N}}_{2}^{+} $ and $ {\text{O}}_{2}^{+} $ on the dielectric almost balances with their generation, leading to the constant numbers of $ {\text{N}}_{2}^{+} $ and $ {\text{O}}_{2}^{+} $. In addition, the variation of averaged electron density ($ {\bar{n}}_{{\mathrm{e}}} $) and averaged electron temperature ($ {\bar{T}}_{{\mathrm{e}}} $) in the voids between the dielectric columns are also analyzed under different experimental parameters. Simulation results indicate that both of them decrease with pressure increasing or voltage amplitude falling. Moreover, they increase with dielectric column radius enlarging. In addition, $ {\bar{n}}_{{\mathrm{e}}} $ increases and then decreases with the increase of N2 content in the working gas, while $ {\bar{T}}_{{\mathrm{e}}} $ monotonically increases. The variations of $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ in the voids can be explained as follows. With the increase of pressure, the increase of collision frequency and the decrease of average free path lead to less energy obtained per unit time by electrons from the electric field, resulting in the decreasing of $ {\bar{T}}_{{\mathrm{e}}} $. Moreover, the first Townsend ionization coefficient decreases with the reduction in $ {\bar{T}}_{{\mathrm{e}}} $, resulting in less electrons produced per unit time. Hence, both $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ decrease with pressure increasing. Additionally, $ {\bar{T}}_{{\mathrm{e}}} $is mainly determined by electric field strength. Therefore, the rising voltage amplitude results in the increase of and $ {\bar{T}}_{{\mathrm{e}}} $. Based on the same reason for pressure, $ {\bar{n}}_{{\mathrm{e}}} $ also increases with the augment of voltage amplitude. Consequently, both $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ increase with voltage amplitude increasing. In addition, the surface area of dielectric columns increases with dielectric column radius enlarging. Therefore, more polarized charges are induced on the inner surface of the dielectric column, inducing a stronger electric field outside. Accordingly, the enlarging of dielectric column radius leads $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ to increase. Moreover, the variation of $ {\bar{n}}_{{\mathrm{e}}} $ with N2 content is analyzed from the ionization rate, and that of $ {\bar{T}}_{{\mathrm{e}}} $ is obtained by analyzing the ionization thresholds of N2 and O2.
  • 图 1  二维PB-DBD反应器示意图.

    Figure 1.  Schematic diagram of the two-dimensional PB-DBD reactor.

    图 2  混合填充 ($ {\varepsilon }_{{\mathrm{r}}} $= 2.5和25.0) PB-DBD中ne (m–3) (a)和E (V/m) (b)的时空演化图, (a), (b)中的数值分别对应最大的lg (ne) 和E (×107)

    Figure 2.  Spatial-temporal evolution of ne (m–3) (a) and E (V/m) (b) in PB-DBD packed by mixed dielectric columns with $ {\varepsilon }_{{\mathrm{r}}} $= 2.5 and 25.0. The maximal (×107 V/m) values correspond to maximal lg (ne) and E (×107), respectively.

    图 3  不同时刻的电子能量分布函数.

    Figure 3.  The electron energy distribution function at different discharge moments.

    图 4  混合填充 ($ {\varepsilon }_{{\mathrm{r}}} $= 2.5和25.0) PB-DBD中e, $ {\text{N}}_{2}^{+} $, $ {\text{O}}_{2}^{+} $和$ {\text{O}}_{2}^{-} $数量随时间的变化

    Figure 4.  Numbers of e, $ {\text{N}}_{2}^{+} $, $ {\text{O}}_{2}^{+} $ and $ {\text{O}}_{2}^{-} $ versus time in PB-DBD packed by mixed dielectric columns with $ {\varepsilon }_{{\mathrm{r}}} $= 2.5 and 25.0.

    图 5  介质柱缝隙中平均电子密度($ {\bar{n}}_{{\mathrm{e}}} $)和平均电子温度($ {\bar{T}}_{{\mathrm{e}}} $)随气压的变化. 其中取平均的空间对应图1中红色虚线框内介质柱缝隙(白色区域)

    Figure 5.  Averaged electron density ($ {\bar{n}}_{{\mathrm{e}}} $) and averaged electron temperature ($ {\bar{T}}_{{\mathrm{e}}} $) as functions of pressure, the average is made in the voids between the dielectric columns surrounded by the red dashed lines (the white regions) in Fig. 1.

    图 6  介质柱缝隙中$ {\bar{n}}_{{\mathrm{e}}} $和$ {\bar{T}}_{{\mathrm{e}}} $随电压幅值Va的变化, 其中取平均的空间与图5相同

    Figure 6.  The $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ in the voids between the dielectric columns as functions of Va, the voids are the same with those in Fig. 5.

    图 7  介质柱缝隙中$ {\bar{n}}_{{\mathrm{e}}} $和$ {\bar{T}}_{{\mathrm{e}}} $随介质柱半径 (R) 的变化关系. 其中取平均的空间与图5相同. 对于不同R, Va也成比例变化以保持外加电场不变

    Figure 7.  The $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ in the voids between the dielectric columns as functions of dielectric column radius (R), the voids are the same with those in Fig. 5. Va is varied for different R to keep applied E constant.

    图 8  介质柱缝隙中$ {\bar{n}}_{{\mathrm{e}}} $和$ {\bar{T}}_{{\mathrm{e}}} $随混合气体中N2含量的变化关系, 其中取平均的空间与图5相同

    Figure 8.  The $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ in the voids between the dielectric columns as functions of N2 content in the mixture, the voids are the same with those in Fig. 5.

    表 1  模型中所考虑的电子与N2和O2的碰撞.

    Table 1.  Collisions of electrons with neutral N2 and O2 considered in the model.

    Reaction Threshold/eV Reference
    Electron-impact ionization [41,4345]
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ 2 e+{{\mathrm{O}}}_{2}^{+} $ 12.06
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ 2 e+{{\mathrm{N}}}_{2}^{+} $ 15.58
    Attachment [41,4345]
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2}+{{\mathrm{O}}}_{2} $→$ {{\mathrm{O}}}_{2}^{-}+{{\mathrm{O}}}_{2} $
    Elastic collision [4345]
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2} $
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2} $
    Electron-impact excitation [4345]
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2}^{{\mathrm{*}}} $ 0.98
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2}^{{\mathrm{*}}} $ 1.63
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2}^{{\mathrm{*}}} $ 6.0
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2}^{{\mathrm{*}}} $ 8.4
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2}^{{\mathrm{*}}} $ 10.0
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 6.169
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 7.353
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 7.362
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 8.165
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 8.399
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 8.549
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 8.89
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 9.7537
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 11.032
    DownLoad: CSV

    表 2  电离速率与附着速率随混合气体中N2含量(10%, 40%, 60%, 90%)的变化

    Table 2.  Change of ionization rate and attachment rate with N2 content (10%, 40%, 60%, 90%) in mixed gas.

    $ {C}_{{{\mathrm{N}}}_{2}} $/%kion/(m3·s–1)katt/(m3·s–1)
    105.0×10–149.0×10–17
    402.7×10–141.5×10–16
    601.3×10–143.1×10–16
    907.2×10–148.0×10–16
    DownLoad: CSV
    Baidu
  • [1]

    Bogaerts A, Kozák T, Van Laer K, Snoeckx R 2015 Faraday Discuss. 183 271

    [2]

    陈少伟, 陈奕, 牛江奇, 刘天奇, 黄建国, 陈焕浩, 范晓雷 2024 化工进展 44

    Chen S W, Chen Y, Niu J Q, Liu T Q, Huang J G, Chen H H, Fan X L 2024 Chem. Ind. Eng. Pro. 44

    [3]

    程 鹤, 雷孝廷, 张文超, 卢新培 2024 高电压技术 50 5206

    Cheng H, Lei X T, Zhang W C, Lu X P 2024 High Volt. Eng. 50 5206

    [4]

    张海宝, 陈强 2021 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [5]

    Lee S, Ha J, Li O L 2024 Nanomaterials 14 1313Google Scholar

    [6]

    Li J, Guo Q, Zhao X, Hu Y K, Zhang S Z, Zhao Y, Li S Z 2023 Mol. Catal. 549 113494Google Scholar

    [7]

    Zhang S, Gao Y, Sun H, Fan Z, Shao T 2022 High Volt. 7 e12201

    [8]

    Hu G T, Ma Y C, Hao Q L, Liu D L, Dou B J, Bin F 2024 New J. Chem. 48 2624Google Scholar

    [9]

    Xu W C, Buelens L C, Galvita V V, Bogaerts A, Meynen V 2024 J. CO2 Util. 83 102820Google Scholar

    [10]

    Lv X, Zhang H P, Zhang H, Shao Y Y, Zhu J S 2024 Prog. Coat. 192 108499Google Scholar

    [11]

    Xu S S, Chansai S, Shao Y, Xu S J, Wang Y C, Haigh S, Mu Y B, Jiao Y L, Stere C E, Chen H H, Fan X L, Hardacre C 2020 Appl. Catal. B: Environ. 268 118752Google Scholar

    [12]

    Zhang S, Gao Y, Sun H, Fan Z, Shao T 2021 Plasma Sci. Technol. 23 064007Google Scholar

    [13]

    Michielsen I, Uytdenhouwen Y, Pype J, Michielsen B, Mertens J, Reniers F, Meynen V, Bogaerts A 2017 Chem. Eng. J. 326 477Google Scholar

    [14]

    Van Laer K, Bogaerts A 2017 Plasma Processes Polym. 14 1600129Google Scholar

    [15]

    Lu X P, Fang Z, Dai D, Shao T, Liu F, Zhang C, Liu D W, Nie L L, Jiang C Q 2023 High Volt. 8 1132Google Scholar

    [16]

    Ren C H, Huang B D, Luo Y, Zhang C, Shao T 2023 Plasma Chem. Plasma Process. 43 1613Google Scholar

    [17]

    Li S Q, Liu Y H, Yuan H, Liang J P, Zhang M, Li Y, Yang D Z 2022 Appl. Sci. 12 8895Google Scholar

    [18]

    Gómez-Ramírez A, Montoro-Damas A M, Cotrino J, Lambert R M, González-Elipe A R 2017 Plasma Processes Polym. 14 e1600081Google Scholar

    [19]

    Jiang N, Lu N, Shang K F, Li J, Wu Y 2013 J. Hazardous Mater. 262 387Google Scholar

    [20]

    Engeling K W, Kruszelnicki J, Kushner M J, Foster J E 2018 Plasma Sources Sci. Technol. 27 085002Google Scholar

    [21]

    Wang W Z, Butterworth T, Bogaerts A 2021 J. Phys. D: Appl. Phys. 54 214004Google Scholar

    [22]

    Li Y, Yang D Z, Qiao J J, Zhang L, Wang W Z, Zhao Z L, Zhou X F, Yuan H, Wang W C 2020 Plasma Sources Sci. Technol. 29 055004Google Scholar

    [23]

    Li X C, Zhang L L, Chen K, Ran J X, Pang X X, Jia P Y 2024 IEEE Trans. Plasma Sci. 52 1619Google Scholar

    [24]

    Van Laer K, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 085007Google Scholar

    [25]

    Zhao P, Gu J G, Wang H Y, Zhang Y, Xu X Y, Jiang W 2020 Plasma Sci. Technol. 22 034013Google Scholar

    [26]

    Zhu M, Hu S Y, Wu F F, Ma H, Xie S Y, Zhang C H 2022 J. Phys. D: Appl. Phys. 55 225207Google Scholar

    [27]

    Zhu X B, Hu X L, Wu X Q, Cai Y X, Zhang H B, Tu X 2020 J. Phys. D: Appl. Phys. 53 164002Google Scholar

    [28]

    Jo S, Lee D H, Kang W S, Song Y H 2014 Phys. Plasmas 20 123507

    [29]

    Li J, Zhu S J, Lu K, Ma C H, Yang D Z, Yu F 2021 J. Environ. Chem. Eng. 9 104654Google Scholar

    [30]

    Xiong R X, Zhao P, Wang H Y, Zhang Y, Jiang W 2020 J. Phys. D: Appl. Phys. 53 185202Google Scholar

    [31]

    Gadkari S, Gu S 2018 Phys. Plasmas 25 063513Google Scholar

    [32]

    Mujahid Z, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201Google Scholar

    [33]

    彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真 2025 74 025202Google Scholar

    Peng Y, Wang C J, Li J, Gao K Y, Xu H C, Chen C J, Qian M Y, Dong B Y, Wang D Z 2025 Acta Phys. Sin. 74 025202Google Scholar

    [34]

    Kourtzanidis, K 2023 Plasma Sources Sci. Technol. 32 105016Google Scholar

    [35]

    Liu J, Zhu X B, Hu X L, Tu X 2022 Plasma Sci. Technol. 24 025503Google Scholar

    [36]

    Kang W S, Kim H H, Teramoto Y, Ogata A, Lee J Y, Kim D W, Hur M, Song Y H 2018 Plasma Sources Sci. Technol. 27 015018Google Scholar

    [37]

    Van Laer K, Bogaerts A 2016 Plasma Sources Sci. Technol. 25 015002Google Scholar

    [38]

    Li S J, Yu X, Dang X Q, Wang P Y, Meng X K, Wang Q, Hou H 2022 J. Clean. Prod. 340 130774Google Scholar

    [39]

    Li S J, Yu X, Dang X Q, Wang P Y, Meng X K, Zheng H C 2022 Plasma Sci. Technol. 24 015504Google Scholar

    [40]

    Gao M X, Zhang Y, Wang H Y, Guo B, Zhang Q Z, Bogaerts A 2018 Catal. 8 248

    [41]

    Zhang Y, Wang H Y, Zhang Y R, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 054002Google Scholar

    [42]

    Zhang Q Z, Zhang L, Yang D Z, Schulze J, Wang Y N, Bogaerts A 2020 Plasma Processes Polym. 18 e2000234

    [43]

    Zuo X, Zhou Y Y, Zhang Q Z, Wang H Y, Li Z H, Zhu J Z, Jiang X W, Zhang Y 2022 Plasma Processes Polym. 19 e2200025Google Scholar

    [44]

    Biagi V8.9 Database. [Online]. 2015 Available: https://www.lxcat.net

    [45]

    Gu J G, Zhang Y, Gao M X, Wang H Y, Zhang Q Z, Yi L, Jiang W 2019 J. Appl. Phys. 125 153303Google Scholar

    [46]

    Zhang Y, Wang H Y, Jiang W, Bogaerts A 2015 New J. Phys. 17 083056Google Scholar

    [47]

    Kuhfeld J, Lepikhin N D, Luggenholscher D, Gzarnetzki U, Donko Z 2023 Plasma Sources Sci. Technol. 32 084001Google Scholar

    [48]

    石峰, 王昊, 朱红伟 2018 真空与低温 24 188Google Scholar

    Shi F, Wang H, Zhu H W 2018 Vacuum Cryogenics 24 188Google Scholar

    [49]

    Zhang L Y, Zhang Q Z, Mujahid Z U, Neuroth C, Berger B, Schulze J 2024 Plasma Sources Sci. Technol. 33 105016Google Scholar

    [50]

    Meierbachtol C S, Greenwood A D, Verboncoeur J P, Shanker B 2015 IEEE Trans. Plasma Sci. 43 3778Google Scholar

    [51]

    Raizer Y P, Kisin V I, Allen J E 1991 Gas Discharge Physics (Heidelberg: Springer

    [52]

    Naidis G V 2011 Appl. Sci. 38 141501

    [53]

    Rad R H, Brüser V, Schiorlin M, Schäfer J, Brandenburg R 2023 Chem. Eng. J. 456 141072Google Scholar

    [54]

    Mei D H, Zhu X B, He Y L, Yan J D, Tu X 2015 Plasma Sources Sci. Technol. 24 015011

    [55]

    Wang X B, Zhu C Y, Wang L, Liu J Q, Jin A 2022 Radiat. Eff. Defect. S. 177 1117

    [56]

    张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙焕霞, 李雪辰 2024 73 085201Google Scholar

    Zhang X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201Google Scholar

    [57]

    Cui Z L, Zhou C, Jafarzadeh A, Meng S Y, Yi Y H, Wang Y F, Zhang X X, Hao Y P, Li L C, Bogaerts A 2022 High Volt. 7 1048Google Scholar

    [58]

    Kumar P, Saha S K, Sharma A 2023 Chem. Eng. S. 282 119372Google Scholar

    [59]

    Chachereau A, Pancheshnyi S 2014 IEEE Trans. Plasma Sci. 42 3328Google Scholar

  • [1] Shu Pan-Pan, Zhao Peng-Cheng. Particle-in-cell-Monte Carlo collision simulation study on gas side breakdown characteristics of high-power microwave dielectric window. Acta Physica Sinica, doi: 10.7498/aps.73.20241177
    [2] Yang Shuang-Yue, Wen Xiao-Qiong, Yang Yuan-Tian, Li Xiao. Discharge characteristics of a microsecond pulsed underwater streamer discharge in multi-needle electrode configuration. Acta Physica Sinica, doi: 10.7498/aps.73.20231881
    [3] Wang Xue, Wen Xiao-Qiong, Wang Li-Ru, Yang Yuan-Tian, Xue Xiao-Dong. Re-illumination and pause behavior of streamer filament of streamer discharge in water. Acta Physica Sinica, doi: 10.7498/aps.71.20211162
    [4] Lin Yi,  Liu Wen-Bo,  Shen Qian. Bi-stability in a fifth-order voltage-controlled memristor-based Chua's chaotic circuit. Acta Physica Sinica, doi: 10.7498/aps.67.20181283
    [5] Xu Ya-Ming, Wang Li-Dan, Duan Shu-Kai. A memristor-based chaotic system and its field programmable gate array implementation. Acta Physica Sinica, doi: 10.7498/aps.65.120503
    [6] Li Jia-Jia, Wu Ying, Du Meng-Meng, Liu Wei-Ming. Dynamic behavior in firing rhythm transitions of neurons under electromagnetic radiation. Acta Physica Sinica, doi: 10.7498/aps.64.030503
    [7] Shao Shu-Yi, Min Fu-Hong, Wu Xue-Hong, Zhang Xin-Guo. Implementation of a new chaotic system based on field programmable gate array. Acta Physica Sinica, doi: 10.7498/aps.63.060501
    [8] Xu Bi-Rong. A simplest parallel chaotic system of memristor. Acta Physica Sinica, doi: 10.7498/aps.62.190506
    [9] Xun Zhi-Peng, Tang Gang, Xia Hui, Hao Da-Peng. Numerical study on the dynamic behavior of internal structure of 1+1-dimensional ballistic deposition model. Acta Physica Sinica, doi: 10.7498/aps.62.010503
    [10] Qian Yu. The influence of spatiotemporal modulation on spiral tip dynamics in excitable medium and its application for spiral control. Acta Physica Sinica, doi: 10.7498/aps.61.158202
    [11] Guo Fu-Ming, Song Yang, Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun. The dynamic process of two-electron atom irradiated by intense laser pulse using time dependent quantum Monte Carlo method. Acta Physica Sinica, doi: 10.7498/aps.61.163203
    [12] Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Numerical simulation on the early dynamics of barium clouds released in the ionosphere. Acta Physica Sinica, doi: 10.7498/aps.61.089401
    [13] Dong Li-Fang, Bai Zhan-Guo, He Ya-Feng. Sparse and dense spiral waves in heterogeneous excitable media. Acta Physica Sinica, doi: 10.7498/aps.61.120509
    [14] Bao Bo-Cheng, Liu Zhong, Xu Jian-Ping. Dynamical analysis of memristor chaotic oscillator. Acta Physica Sinica, doi: 10.7498/aps.59.3785
    [15] Shi Hua-Ping, Ke Jian-Hong, Sun Ce, Lin Zhen-Quan. Rules of the population distribution of China and its evolution mechanism. Acta Physica Sinica, doi: 10.7498/aps.58.1.1
    [16] Wang Bao-Yan, Xu Wei, Xing Zhen-Ci. Fire patterns of coupled FitzHugh-Nagumo neurons exposed to external electric field. Acta Physica Sinica, doi: 10.7498/aps.58.6590
    [17] Liu Ling, Su Yan-Chen, Liu Chong-Xin. A new chaotic system and its circuit simulation. Acta Physica Sinica, doi: 10.7498/aps.56.1966
    [18] A hyperchaotic system and its fractional order circuit simulation. Acta Physica Sinica, doi: 10.7498/aps.56.6865
    [19] Liu Ling, Su Yan-Chen, Liu Chong-Xin. A new chaotic system and its circuit emulation. Acta Physica Sinica, doi: 10.7498/aps.55.3933
    [20] FENG PEI-CHENG, TANG YI. A SINGULAR PERTURBATION THEORY FOR THE STUDY OF NEWTONIAN DYNAMICAL BEHAVIOUR OF KINK. Acta Physica Sinica, doi: 10.7498/aps.50.1213
Metrics
  • Abstract views:  322
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2025
  • Accepted Date:  17 April 2025
  • Available Online:  06 May 2025

/

返回文章
返回
Baidu
map