Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Parametric excitation of axisymmetric toroidal electrostatic mode by drift wave turbulences

Zhang Yang-Zhong Xie Tao

Citation:

Parametric excitation of axisymmetric toroidal electrostatic mode by drift wave turbulences

Zhang Yang-Zhong, Xie Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The axisymmetric toroidal electrostatic mode discussed in this paper refers collectively to the nearly ideal electrostatic fluid mode with zero toroidal mode number in magnetically confined toroidal plasmas like tokamak, including geodesic acoustic mode, sound waves and the so-called nearly zero-frequency zonal flow. Use is made of cold ion fluid model in the toroidal coordinate system with a circular cross section to develop the theory of parametric excitation for the three above mentioned modes systematically to the first order of inverse large aspect ratio, which ends up with the four following observations: (1) The density zonal flow is only associated with the excitation of the first harmonic cosine sound wave and is independent of the potential zonal flow. (2) The geodesic acoustic mode is the high frequency branch of the dispersion in the form of coupling between the first harmonic sine sound wave and the nearly zero-frequency zonal flow due to geodesic curvature, while the low frequency branch of the same dispersion is identified to be the ‘toroidally modified nearly zero-frequency zonal flow’. (3) Only a weak coupling exists between the second harmonic sine sound wave and the nearly zero-frequency zonal flow. (4) All cosine sound waves and sine sound waves beyond the second harmonic are decoupled to the nearly zero-frequency zonal flow. A Gaussian type of drift wave energy spectrum with only a few parameters is introduced for calculation. Emphasis is laid on the effects resulting from the finite radial spectrum width such as double Landau-singularity, which reveal a significant modification to the δ -spectrum, thus resulting in serious restriction to the parametric excitation of geodesic acoustic mode and nearly zero-frequency zonal flow. Also discussed is the possibility of excitation of density zonal flow in the high q region. Numerical results are presented graphically and discussed in the reasonable physical regime. It is indicated that the geodesic acoustic mode and the nearly zero-frequency zonal flow cannot be parametrically excited at the same radii, and that if the geodesic acoustic mode is parametrically excited, the density zonal flow is expectedly to be observed.
    • Funds: Project supported by the ITER-China Program (Grant No. 2010GB107000), the National Natural Science Foundation of China (Grant No. NSFC-11075162), and the National Magnetic Confinement Fusion Science Program, China (Grant No. 2009GB101002).
    [1]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35

    [2]

    Fujisawa A 2009 Nucl. Fusion 49 013001

    [3]

    Itoh K, Itoh S I, Diamond P H 2006 Phys. Plasmas 13 055502

    [4]

    Smolyakov A I, Diamond P H, Shevchenko V I 2000 Phys. Plasmas 7 1349

    [5]

    Chakrabarti N, Singh R, Kaw P K, Guzdar P N 2007 Phys. Plasmas 14 052308

    [6]

    Hillesheim J C, Peebles W A, Carter T A, Schmitz L, Rhodes T L 2012 Phys. Plasmas 19 022301

    [7]

    Conway G D, Angioni C, Ryter F, Sauter P, Vicente J, the ASDEX Up-grade Team 2011 Phys. Rev. Lett. 106 065001

    [8]

    McKee G R, Gohil P, Schlossberg D J, Boedo J A, Burrell K H, deGrassie J S, Groebner R J, Moyer R A, Petty C C, Rhodes T L, Schmitz L, Shafer M W, Solomon W M, Umansky M, Wang G, White A E, Xu X 2009 Nucl. Fusion 49 115016

    [9]

    Zhang Y Z, Xie T, Mahajan S M 2012 Phys. Plasmas 19 020701

    [10]

    Gao Z 2013 Phys. Plasmas 20 032501

    [11]

    Guo W, Wang S, Li J G 2010 Phys. Plasmas 17 112510

    [12]

    Qiu Z Y 2010 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [仇志勇 2010 博士学位论文(合肥: 中国科学技术大学)]

    [13]

    Hong W Y, Yan L W, Zhao K J, Dong J Q, Cheng J, Qian J, Luo C W, Xu Z Y, Huang Y, Yang Q W, Lan T, Yu C X, Liu A D 2008 Acta Phys. Sin. 57 962 (in Chinese) [洪文玉, 严龙文, 赵开君, 董家齐, 程均, 钱俊, 罗萃文, 徐征宇, 黄渊, 杨青巍, 兰涛, 俞昌旋, 刘阿娣 2008 57 962]

    [14]

    Peng X D, Qiu X M, Lu H L, Wang S J 2009 Acta Phys. Sin. 58 6387 (in Chinese) [彭晓东, 邱孝明, 陆赫林, 王顺金 2009 58 6387]

    [15]

    Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J, Cheng J, Yu D L, Yang Q W 2008 Plasma Phys. Control. Fusion 50 045002

    [16]

    Zhao H L, Lan T, Liu A D, Kong D F, Xie J L, Liu W D, Yu C X, Zhang W, Chang J F, Wan B N, Li J G 2010 Plasma Sci. Technol. 12 262

    [17]

    Kong D F, Liu A D, Lan T, Zhao H L, Sheng H G, Xu G S, Zhang W, Wan B N, Li J G, Chen R, Xie J L, Li H, Liu W D, Yu C X 2013 Nucl. Fusion 53 113008

    [18]

    Kong D F, Liu A D, Lan T, Cui Z Y, Yu D L, Yan L W, Zhao H L, Sheng H G, Chen R, Xie J L, Li H, Liu W D, Yu C X, Hong W Y, Cheng J, Zhao K J, Dong J Q, Duan X R 2013 Plasma Phys. 53 123006

    [19]

    Hasegawa A, Mima K 1978 Phys. Fluids 12 87

    [20]

    Zhang Y Z, Xie T 2013 Nucl. Fusion & Plasma Phys. 33 1 (in Chinese) [章扬忠, 谢涛 2013 核聚变与等离子体物理 33 1]

    [21]

    Braginskii S I (edited by Leontovich M A) 1965 Reviews of Plasma Physics 1 (New York: Consultants Bureau) pp205–311

    [22]

    Abramowitz M, Stegun I 1965 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover Publications) 20.2.27

    [23]

    Winsor N, Johnson J, Dawson J 1968 Phys. Fluids 11 2448

  • [1]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35

    [2]

    Fujisawa A 2009 Nucl. Fusion 49 013001

    [3]

    Itoh K, Itoh S I, Diamond P H 2006 Phys. Plasmas 13 055502

    [4]

    Smolyakov A I, Diamond P H, Shevchenko V I 2000 Phys. Plasmas 7 1349

    [5]

    Chakrabarti N, Singh R, Kaw P K, Guzdar P N 2007 Phys. Plasmas 14 052308

    [6]

    Hillesheim J C, Peebles W A, Carter T A, Schmitz L, Rhodes T L 2012 Phys. Plasmas 19 022301

    [7]

    Conway G D, Angioni C, Ryter F, Sauter P, Vicente J, the ASDEX Up-grade Team 2011 Phys. Rev. Lett. 106 065001

    [8]

    McKee G R, Gohil P, Schlossberg D J, Boedo J A, Burrell K H, deGrassie J S, Groebner R J, Moyer R A, Petty C C, Rhodes T L, Schmitz L, Shafer M W, Solomon W M, Umansky M, Wang G, White A E, Xu X 2009 Nucl. Fusion 49 115016

    [9]

    Zhang Y Z, Xie T, Mahajan S M 2012 Phys. Plasmas 19 020701

    [10]

    Gao Z 2013 Phys. Plasmas 20 032501

    [11]

    Guo W, Wang S, Li J G 2010 Phys. Plasmas 17 112510

    [12]

    Qiu Z Y 2010 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [仇志勇 2010 博士学位论文(合肥: 中国科学技术大学)]

    [13]

    Hong W Y, Yan L W, Zhao K J, Dong J Q, Cheng J, Qian J, Luo C W, Xu Z Y, Huang Y, Yang Q W, Lan T, Yu C X, Liu A D 2008 Acta Phys. Sin. 57 962 (in Chinese) [洪文玉, 严龙文, 赵开君, 董家齐, 程均, 钱俊, 罗萃文, 徐征宇, 黄渊, 杨青巍, 兰涛, 俞昌旋, 刘阿娣 2008 57 962]

    [14]

    Peng X D, Qiu X M, Lu H L, Wang S J 2009 Acta Phys. Sin. 58 6387 (in Chinese) [彭晓东, 邱孝明, 陆赫林, 王顺金 2009 58 6387]

    [15]

    Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J, Cheng J, Yu D L, Yang Q W 2008 Plasma Phys. Control. Fusion 50 045002

    [16]

    Zhao H L, Lan T, Liu A D, Kong D F, Xie J L, Liu W D, Yu C X, Zhang W, Chang J F, Wan B N, Li J G 2010 Plasma Sci. Technol. 12 262

    [17]

    Kong D F, Liu A D, Lan T, Zhao H L, Sheng H G, Xu G S, Zhang W, Wan B N, Li J G, Chen R, Xie J L, Li H, Liu W D, Yu C X 2013 Nucl. Fusion 53 113008

    [18]

    Kong D F, Liu A D, Lan T, Cui Z Y, Yu D L, Yan L W, Zhao H L, Sheng H G, Chen R, Xie J L, Li H, Liu W D, Yu C X, Hong W Y, Cheng J, Zhao K J, Dong J Q, Duan X R 2013 Plasma Phys. 53 123006

    [19]

    Hasegawa A, Mima K 1978 Phys. Fluids 12 87

    [20]

    Zhang Y Z, Xie T 2013 Nucl. Fusion & Plasma Phys. 33 1 (in Chinese) [章扬忠, 谢涛 2013 核聚变与等离子体物理 33 1]

    [21]

    Braginskii S I (edited by Leontovich M A) 1965 Reviews of Plasma Physics 1 (New York: Consultants Bureau) pp205–311

    [22]

    Abramowitz M, Stegun I 1965 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover Publications) 20.2.27

    [23]

    Winsor N, Johnson J, Dawson J 1968 Phys. Fluids 11 2448

  • [1] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] Feng Yun-Long, Hou Shang-Lin, Lei Jing-Li, Wu Gang, Yan Zu-Yong. Analysis of acoustic modes induced by backward stimulated Brillouin scattering in acoustic wave-guided single mode optical fibers. Acta Physica Sinica, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [3] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [4] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [5] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [6] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [7] Liu Tai-Qi, Chen Shao-Yong, Mou Mao-Lin, Tang Chang-Jian. Theoretical study of effect of hyper-resistivity on linear stability of ballooning mode. Acta Physica Sinica, 2023, 72(14): 145201. doi: 10.7498/aps.72.20230308
    [8] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [9] Hao Bao-Long, Chen Wei, Li Guo-Qiang, Wang Xiao-Jing, Wang Zhao-Liang, Wu Bin, Zang Qing, Jie Yin-Xian, Lin Xiao-Dong, Gao Xiang, CFETR TEAM. Numerical simulation of synergistic effect of neoclassical tearing mode and toroidal field ripple on alpha particle loss in China Fusion Engineering Testing Reactor. Acta Physica Sinica, 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [10] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [11] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [12] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [13] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [14] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [15] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [16] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [17] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [18] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [19] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [20] SHI BING-REN. ANALYTIC STUDY OF LOWER HYBRID WAVE PROPAGATION IN TOKAMAK LHCD EXPERIMENTS. Acta Physica Sinica, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
Metrics
  • Abstract views:  5764
  • PDF Downloads:  446
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2013
  • Accepted Date:  26 September 2013
  • Published Online:  05 February 2014

/

返回文章
返回
Baidu
map