搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EAST上基于平衡中性束注入方法的L模等离子体自发扭矩分布实验研究

袁泓 尹相辉 吕波 金仡飞 BaeCheonho 张洪明 符佳 刘海庆 赵海林 臧庆 王福地 向东

引用本文:
Citation:

EAST上基于平衡中性束注入方法的L模等离子体自发扭矩分布实验研究

袁泓, 尹相辉, 吕波, 金仡飞, BaeCheonho, 张洪明, 符佳, 刘海庆, 赵海林, 臧庆, 王福地, 向东

Experimental study of intrinsic torque distribution of L-mode plasma based on balanced neutral beam injection on EAST

YUAN Hong, YIN Xianghui, LV Bo, JIN Yifei, BAE Cheonho, ZHANG Hongming, FU Jia, LIU Haiqing, ZHAO Hailin, ZANG Qing, WANG Fudi, XIANG Dong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 等离子体旋转及其剪切是影响聚变装置的关键参数之一, 等离子体旋转的驱动和控制对未来聚变堆的稳定运行和约束改善都具有很大意义. 目前靠外部动量注入的方式不足以在满足Q大于5的同时抑制电阻壁模不稳定性. 因此, 有必要对不依赖外部动量注入的等离子体自发旋转展开实验研究. 为了更好地预测未来聚变装置中自发旋转速度的大小, 本论文在东方超环托卡马克(EAST)上开展了残余应力与无量纲参数的定标研究, 利用平衡中性束的方法进行了多次自发扭矩的实验测量, 为未来托卡马克装置中等离子体自发旋转的预测提供实验依据. 实验定标结果表明, 芯部残余应力与$\rho _{\ast }^{-1.80\pm1.26}$相关, 而边界残余应力的定标则显示出与$\rho _{\ast }^{1.26\pm0.63}$的依赖性, 这表明随着装置尺寸的增大, 未来托卡马克聚变堆中芯部的残余应力可能会增大, 而边界残余应力则减小. 芯部与边界残余应力的定标结果差异表明, 在边界区域SOL区残余应力的产生过程中, 有$\mathbf{E}\times\mathbf{B}$流剪切以外的对称性破坏机制起主导作用. 在自发扭矩与$\nu _{\ast }$的定标之间发现芯部自发扭矩依赖于$\nu _{\ast }^{0.21\pm0.18}$. 结合芯部自发扭矩与归一化旋转半径、归一化碰撞率的定标结果, 得到芯部自发扭矩的定标律为$\rho _{\ast }^{-1.39\pm0.71}\nu _{\ast }^{-0.11\pm0.10}$. 使用ITER氘-氚混合运行方案中的等离子体参数预测得到芯部自发扭矩大小为$1.0\pm6.3$ N$\cdot$m, 远小于之前DIII-D预测结果.
    Plasma rotation and its shear are key parameters influencing the performance of fusion devices. The prediction and control of plasma rotation velocity are of great significance for improving the stable operation and confinement of future fusion reactors. External momentum injection methods are insufficient to suppress resistive wall mode instability while achieving Q greater than 5 in International Thermonuclear Experimental Reactor (ITER). Therefore, it is necessary to conduct experimental research on intrinsic plasma rotation that does not rely on external momentum injection. To better predict the magnitude of intrinsic rotation velocity in future fusion devices, we conduct an experimental study on the scaling of residual stress and dimensionless parameters on EAST. Using the balanced neutral beam, multiple measurements of intrinsic torque are performed, providing experimental basis for predicting the intrinsic rotation in future tokamak devices. The scaling results indicate that the core residual stress is dependent on $\rho_{\ast}^{-1.80\pm1.26}$, while the scaling of edge residual stress shows an opposite trend with $\rho _{\ast }^{1.26\pm0.63}$. This suggests that as the device size increases, the core residual stress in future large devices can increase, while the edge residual stress can decrease. The difference in scaling results between the core and edge residual stress indicates that in the edge region, the symmetry-breaking mechanism other than $\mathbf{E}\times\mathbf{B}$ flow shear dominates the generation of residual stress in the scrape-off layer (SOL). A relationship is found between intrinsic torque and $\nu _{\ast }$, revealing that the core intrinsic torque depends on $\nu _{\ast }^{-0.21\pm0.18}$. Combining the scaling results of core intrinsic torque with the gyroradius and normalized collisionality, the scaling law for core intrinsic torque is obtained to be $\rho _{\ast }^{-1.39\pm0.71}\nu _{\ast }^{0.11\pm0.10}$. Using plasma parameters of ITER operation scenario 1, the core intrinsic torque in future ITER plasma is predicted to be $1.0\pm6.3$ ${\mathrm{N}}{\cdot} {\mathrm{m}}$, which is much smaller than the predicted magnitude at DIII-D.
  • 图 1  EAST上NBI和CXRS系统的布局

    Fig. 1.  Layout of NBI and CXRS systems at EAST

    图 2  时间演化: (a)等离子体电流; (b)等离子体储能; (c)中性束功率; (d)平均电子密度; (e)芯部电子温度; (f)芯部离子温度; (g)芯部环向旋转速度

    Fig. 2.  Time evolutions of: (a) plasma current; (b) stored energy; (c) neutral beam source power; (d) line-averaged electron density; (e) central electron temperature; (f) central ion temperature; and (g) central toroidal rotation velocity.

    图 3  $ \# $90833不同驱动方案下NBI扭矩密度和环向旋转速度的比较. (a) NBI的总输入扭密度; (b) 等离子体环向旋转速度

    Fig. 3.  $ \# $90833 Comparison of NBI torque density and toroidal rotation velocity among different momentum driving schemes. (a) total input torque densities from NBIs; (b) toroidal rotation velocities.

    图 4  放电$ \# $90833在4.69 s时: (a)电子密度和安全因子; (b)电子和离子温度; (c)环向旋转速度分布

    Fig. 4.  Profiles of: (a) electron density and safety factor, (b) electron and ion temperature, and (c) toroidal rotation velocity at 4.69 s of discharge $ \# $90833.

    图 5  (a) TransROTA计算的速度相关项的径向分布; (b) TRANSP/NUBEAM计算的NBI力矩密度、速度相关项以及自发扭矩密度之间的对比

    Fig. 5.  (a) Radial distributions of TransROTA-calculated velocity-dependent terms (b) Comparison among TRANSP/NUBEAM-calculated NBI injected torque densities, veolocity-dependent terms and intrinsic torque densities.

    图 6  (a) NBI力矩密度和自发扭矩力矩密度的径向分布; (b) 体积分后的力矩分布. 两种不同的自发扭矩定义及其积分区域如图(a)和(b)所示

    Fig. 6.  (a) Radial distributions of NBI and intrinsic torque densities; (b) volume-integrated torque profiles. Two different definitions of intrinsic torque and their integral ranges are shown in (a) and (b).

    图 7  自发扭矩与$ \rho_{\ast} $的定标结果

    Fig. 7.  Scaling results of intrinsic torques as a function of $ \rho_{\ast} $.

    图 8  芯部自发扭矩与$ \nu_{\ast} $的定标结果

    Fig. 8.  Scaling results of intrinsic torques as a function of $ \nu_{\ast} $.

    图 9  芯部自发扭矩与压力梯度的定标关系

    Fig. 9.  Scaling results of core intrinsic torques as a function of pressure gradients.

    图 10  边界自发扭矩与压力梯度的定标关系

    Fig. 10.  Scaling results of edge intrinsic torques as a function of pressure gradients.

    Baidu
  • [1]

    Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51 094027Google Scholar

    [2]

    Diamond P, Kosuga Y, Gürcan ff, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53 104019Google Scholar

    [3]

    Ida K, Rice J 2014 Nucl. Fusion 54 045001Google Scholar

    [4]

    Rice J E 2016 Plasma Phys. Control. Fusion 58 083001Google Scholar

    [5]

    Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61 124003Google Scholar

    [6]

    Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89 235001Google Scholar

    [7]

    Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19 052502Google Scholar

    [8]

    Ida K, Miura Y, Matsuda T, Itoh K, Hidekuma S, Itoh S I, Jft-2 M Group 1995 Phys. Rev. Lett. 74 1990Google Scholar

    [9]

    Rice J, Ince-Cushman A, deGrassie J, Eriksson L G, Sakamoto Y, Scarabosio A, Bortolon A, Burrell K, Duval B, Fenzi-Bonizec C, Greenwald M, Groebner R, Hoang G, Koide Y, Marmar E, Pochelon A, Podpaly Y 2007 Nucl. Fusion 47 1618Google Scholar

    [10]

    Yoshida M, Kamada Y, Takenaga H, Sakamoto Y, Urano H, Oyama N, Matsunaga G 2008 Phys. Rev. Lett. 100 105002Google Scholar

    [11]

    Solomon W M, Burrell K H, deGrassie J S, Budny R, Groebner R J, Kinsey J E, Kramer G J, Luce T C, Makowski M A, Mikkelsen D, Nazikian R, Petty C C, Politzer P A, Scott S D, Van Zeeland M A, Zarnstorff M C 2007 Plasma Phys. Control. Fusion 49 B313Google Scholar

    [12]

    Solomon W M, Burrell K H, Garofalo A M, Kaye S M, Bell R E, Cole A J, deGrassie J S, Diamond P H, Hahm T S, Jackson G L, Lanctot M J, Petty C C, Reimerdes H, Sabbagh S A, Strait E J, Tala T, Waltz R E 2010 Phys. Plasmas 17 056108Google Scholar

    [13]

    Chrystal C, Grierson B A, Solomon W M, Tala T, deGrassie J S, Petty C C, Salmi A, Burrell K H 2017 Phys. Plasmas 24 042501Google Scholar

    [14]

    Rice J, Cao N, Tala T, Chrystal C, Greenwald M, Hughes J, Marmar E, Reinke M, Rodriguez Fernandez P, Salmi A 2021 Nucl. Fusion 61 026013Google Scholar

    [15]

    Zimmermann C, McDermott R, Angioni C, Duval B, Dux R, Fable E, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T, the ASDEX Upgrade Team 2023 Nucl. Fusion 63 126006Google Scholar

    [16]

    Rice J, Duval B, Reinke M, Podpaly Y, Bortolon A, Churchill R, Cziegler I, Diamond P, Dominguez A, Ennever P, Fiore C, Granetz R, Greenwald M, Hubbard A, Hughes J, Irby J, Ma Y, Marmar E, McDermott R, Porkolab M, Tsujii N, Wolfe S 2011 Nucl. Fusion 51 083005Google Scholar

    [17]

    Wang X, Lyu B, Lu X, Li Y, Solomon W M, Hao B, Chen J, Wang F, Fu J, Zhang H, Yang J, Bin B, He L, Li Y, Wan S, Gong X, Wan B, Ye M 2020 Plasma Sci. Technol. 22 065104Google Scholar

    [18]

    Bae C, Jin Y, Lyu B, Hao B, Li Y, Zhang X, Liu H, Zhang H, Wang F, Fu J, Fu J, Huang J, Zeng L, Zang Q, Li Y, He L, Lu D 2024 Plasma Phys. Control. Fusion 66 045020Google Scholar

    [19]

    Yang S, Na Y S, Na D, Park J K, Shi Y, Ko W, Lee S, Hahm T 2018 Nucl. Fusion 58 066008Google Scholar

    [20]

    Zimmermann C F B, McDermott R M, Fable E, Angioni C, Duval B P, Dux R, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T 2022 Plasma Phys. Control. Fusion 64 055020Google Scholar

    [21]

    Ohtani Y, Yoshida M, Honda M, Narita E 2021 AIP Adv. 11 085306Google Scholar

    [22]

    Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, For The East Team And Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [23]

    Liu H, Jie Y, Ding W, Brower D, Zou Z, Qian J, Li W, Yang Y, Zeng L, Zhang S, Lan T, Wang S, Hanada K, Wei X, Hu L, Wan B 2016 JINST 11 C01049Google Scholar

    [24]

    Zang Q, Zhao J, Yang L, Hu Q, Xi X, Dai X, Yang J, Han X, Li M, Hsieh C L 2011 Rev. Sci. Instrum. 82 063502Google Scholar

    [25]

    Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 89 10H111Google Scholar

    [26]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 85 11E428Google Scholar

    [27]

    Yin X H, Li Y Y, Fu J, Jiang D, Feng S Y, Gu Y Q, Cheng Y, Lyu B, Shi Y J, Ye M Y, Wan B N 2016 Rev. Sci. Instrum. 87 11E539Google Scholar

    [28]

    Yin X, Li Y, Fu J, Jiang D, Lyu B, Shi Y, Ye M, Wan B 2019 Fusion Eng. Des. 148 111282Google Scholar

    [29]

    Yoshida M, Koide Y, Takenaga H, Urano H, Oyama N, Kamiya K, Sakamoto Y, Kamada Y, Team T J 2006 Plasma Phys. Control. Fusion 48 1673Google Scholar

    [30]

    Tala T, Crombé K, De Vries P C, Ferreira J, Mantica P, Peeters A G, Andrew Y, Budny R, Corrigan G, Eriksson A, Garbet X, Giroud C, Hua M D, Nordman H, Naulin V, Nave M F F, Parail V, Rantamäki K, Scott B D, Strand P, Tardini G, Thyagaraja A, Weiland J, Zastrow K D, JET-EFDA Contributors 2007 Plasma Phys. Control. Fusion 49 B291Google Scholar

    [31]

    Ryter F, Dux R, Mantica P, Tala T 2010 Plasma Phys. Control. Fusion 52 124043. Number: 12

    [32]

    Yang J, Chen J, Wang F D, Li Y Y, Lyu B, Xiang D, Yin X H, Zhang H M, Fu J, Liu H Q, Zang Q, Chu Y Q, Liu J W, Wang X Y, Bin B, He L, Wan S K, Gong X Y, Ye M Y 2020 Acta Phys. Sin. 69 055201Google Scholar

    [33]

    Bae C, Stacey W, Solomon W 2013 Nucl. Fusion 53 043011Google Scholar

    [34]

    Bae C, Jin Y, Lyu B, Fu J, Wang F, Zhang H 2024 Comput. Phys. Commun. 296 108992Google Scholar

    [35]

    GOLDSTON R J 1981 J. Comput. Phys. 43 61Google Scholar

    [36]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [37]

    Solomon W, Burrell K, deGrassie J, Boedo J, Garofalo A, Moyer R, Muller S, Petty C, Reimerdes H 2011 Nucl. Fusion 51 073010Google Scholar

    [38]

    Rice J E, Ince-Cushman A C, Reinke M L, Podpaly Y, Greenwald M J, LaBombard B, Marmar E S 2008 Plasma Phys. Control. Fusion 50 124042Google Scholar

    [39]

    Kosuga Y, Diamond P H, Gürcan ff D 2010 Phys. Plasmas 17 102313Google Scholar

    [40]

    Green B J, Team I I, Teams P 2003 Plasma Phys. Control. Fusion 45 687Google Scholar

    [41]

    III R W B, Stoltzfus-Dueck T 2024 Plasma Phys. Control. Fusion 66 065011Google Scholar

    [42]

    Parra F I, Barnes M 2015 Plasma Phys. Control. Fusionn 57 045002Google Scholar

  • [1] 金仡飞, 张洪明, 尹相辉, 吕波, CheonhoBae, 叶凯萱, 盛回, 王士凡, 赵海林, 顾帅, 袁泓, 林子超, 傅盛宇, 卢迪安, 符佳, 王福地. EAST上RMP驱动等离子体自发旋转物理机制的实验研究.  , doi: 10.7498/aps.73.20241357
    [2] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , doi: 10.7498/aps.72.20222043
    [3] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究.  , doi: 10.7498/aps.72.20230620
    [4] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟.  , doi: 10.7498/aps.72.20230991
    [5] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , doi: 10.7498/aps.70.20202003
    [6] 陆勇俊, 杨溢, 王峰会, 楼康, 赵翔. 连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响.  , doi: 10.7498/aps.65.098102
    [7] 王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰. 晶圆键合和激光剥离工艺对GaN基垂直结构发光二极管芯片残余应力的影响.  , doi: 10.7498/aps.64.028501
    [8] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用.  , doi: 10.7498/aps.63.125204
    [9] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究.  , doi: 10.7498/aps.62.245206
    [10] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究.  , doi: 10.7498/aps.61.115207
    [11] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , doi: 10.7498/aps.59.5596
    [12] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究.  , doi: 10.7498/aps.58.8448
    [13] 江洋, 罗毅, 席光义, 汪莱, 李洪涛, 赵维, 韩彦军. AlGaN插入层对6H-SiC上金属有机物气相外延生长的GaN薄膜残余应力及表面形貌的影响.  , doi: 10.7498/aps.58.7282
    [14] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响.  , doi: 10.7498/aps.58.7025
    [15] 孔德军, 张永康, 陈志刚, 鲁金忠, 冯爱新, 任旭东, 葛 涛. 基于XRD的镀锌钝化膜残余应力试验研究.  , doi: 10.7498/aps.56.4056
    [16] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动.  , doi: 10.7498/aps.55.1307
    [17] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用.  , doi: 10.7498/aps.55.5451
    [18] 邵淑英, 范正修, 邵建达. ZrO2/SiO2多层膜中膜厚组合周期数及基底材料对残余应力的影响.  , doi: 10.7498/aps.54.3312
    [19] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运.  , doi: 10.7498/aps.52.1970
    [20] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究.  , doi: 10.7498/aps.50.1956
计量
  • 文章访问数:  200
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-19
  • 修回日期:  2025-02-09
  • 上网日期:  2025-03-06

/

返回文章
返回
Baidu
map