搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EAST上基于平衡中性束注入方法的L模等离子体自发扭矩分布实验研究

袁泓 尹相辉 吕波 金仡飞 Cheonho Bae 张洪明 符佳 刘海庆 赵海林 臧庆 王福地 向东

引用本文:
Citation:

EAST上基于平衡中性束注入方法的L模等离子体自发扭矩分布实验研究

袁泓, 尹相辉, 吕波, 金仡飞, Cheonho Bae, 张洪明, 符佳, 刘海庆, 赵海林, 臧庆, 王福地, 向东

Experimental analysis of plasma intrinsic torque based on NBI in EAST L-mode plasmas

YUAN Hong, YIN Xianghui, LV Bo, JIN Yifei, Cheonho BAE, ZHANG Hongming, FU Jia, LIU Haiqing, ZHAO Hailin, ZANG Qing, WANG Fudi, XIANG Dong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 等离子体旋转及其剪切是影响聚变装置的关键参数之一,等离子体旋转的驱动和控制对未来聚变堆的稳定运行和约束改善都具有很大意义。目前靠外部动量注入的方式不足以在满足Q大于5的同时抑制电阻壁模不稳定性。因此,有必要对不依赖外部动量注入的等离子体自发旋转展开实验研究。为了更好地预测未来聚变装置中自发旋转速度的大小,本论文在东方超环托卡马克(EAST)上开展了残余应力与无量纲参数的定标研究,利用平衡中性束的方法进行了多次自发扭矩的实验测量,为未来托卡马克装置中等离子体自发旋转的预测提供实验依据。实验定标结果表明,芯部残余应力与 $\rho_*^{-1.80 \pm 1.26}$ 相关,而边界残余应力的定标则显示出与 $\rho_*^{1.26 \pm 0.63}$ 的依赖性,这表明随着装置尺寸的增大,未来托卡马克聚变堆中芯部的残余应力可能会增大,而边界残余应力则减小。芯部与边界残余应力的定标结果差异表明,在边界区域SOL区残余应力的产生过程中,有 E × B 流剪切以外的对称性破坏机制起主导作用。在自发扭矩与 $\nu_*$ 的定标之间发现芯部自发扭矩依赖于 $\nu_*^{0.21 \pm 0.18}$。结合芯部自发扭矩与归一化旋转半径、归一化碰撞率的定标结果,得到芯部自发扭矩的定标律为 $\rho_*^{-1.39 \pm 0.71} \nu_*^{-0.11 \pm 0.10}$。使用ITER氘-氚混合运行方案中的等离子体参数预测得到芯部自发扭矩大小为1.0 ±6.3 N·m,远小于之前DIII-D预测结果。
    Plasma rotation and its shear are key parameters influencing fusion devices. The prediction and control of plasma rotation velocity are of great significance for the stable operation and confinement improvement of future fusion reactors. External momentum injection methods are insuffcient to suppress resistive wall mode instability while achieving Q greater than 5 in International Thermonuclear Experimental Reactor (ITER). Therefore, it is necessary to conduct experimental research on intrinsic plasma rotation that does not rely on external momentum injection.To better predict the magnitude of intrinsic rotation velocity in future fusion devices, this experiment conducted a study on the scaling of residual stress and dimensionless parameters on EAST. Using the balanced neutral beam, multiple measurements of intrinsic torque were performed, providing experimental basis for the prediction of intrinsic rotation in future tokamak devices. The scaling results indicate that the core residual stress has a dependency on $\rho_*^{-1.80 \pm 1.26}$, while the scaling of edge residual stress shown a opposite trend with $\rho_*^{1.26} \pm 0.63$.This suggests that as the device size increases, the core residual stress in future large devices may increase, while the edge residual stress may decrease. The difference in scaling results between the core and edge residual stress indicates that in the edge region, there are symmetry-breaking mechanisms other than E × B flow shear dominating the generation of residual stress in the scrape-off layer (SOL).A relationship was found between intrinsic torque and $\nu_*$, revealing that core intrinsic torque depends on $\nu_*^{-0.21 \pm 0.18}$.Combining the scaling results of core intrinsic torque with gyroradius and normalized collisionality, the scaling law for core intrinsic torque is obtained as $\rho_*^{-1.39 \pm 0.71} \nu_*^{0.11 \pm 0.10}$.Using plasma parameters of ITER operation scenario 1, the core intrinsic torque in future ITER plasma is predicted to be 1.0 ±6.3 N · m, which is much smaller than predicted magnitude at DIII-D.
  • [1]

    Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51094027

    [2]

    Diamond P, Kosuga Y, Gürcan ff, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53104019

    [3]

    Ida K, Rice J 2014 Nucl. Fusion 54045001

    [4]

    Rice J E 2016 Plasma Phys. Control. Fusion 58083001

    [5]

    Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61124003

    [6]

    Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89235001

    [7]

    Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19052502

    [8]

    Ida K, Miura Y, Matsuda T, Itoh K, Hidekuma S, Itoh S I, Jft-2M Group 1995 Phys. Rev. Lett. 741990

    [9]

    Rice J, Ince-Cushman A, deGrassie J, Eriksson L G, Sakamoto Y, Scarabosio A, Bortolon A, Burrell K, Duval B, Fenzi-Bonizec C, Greenwald M, Groebner R, Hoang G, Koide Y, Marmar E, Pochelon A, Podpaly Y 2007 Nucl. Fusion 471618

    [10]

    Yoshida M, Kamada Y, Takenaga H, Sakamoto Y, Urano H, Oyama N, Matsunaga G 2008 Phys. Rev. Lett. 100105002

    [11]

    Solomon W M, Burrell K H, deGrassie J S, Budny R, Groebner R J, Kinsey J E, Kramer G J, Luce T C, Makowski M A, Mikkelsen D, Nazikian R, Petty C C, Politzer P A, Scott S D, Van Zeeland M A, Zarnstorff M C 2007 Plasma Phys. Control. Fusion 49 B313

    [12]

    Solomon W M, Burrell K H, Garofalo A M, Kaye S M, Bell R E, Cole A J, deGrassie J S, Diamond P H, Hahm T S, Jackson G L, Lanctot M J, Petty C C, Reimerdes H, Sabbagh S A, Strait E J, Tala T, Waltz R E 2010 Phys. Plasmas 17056108

    [13]

    Chrystal C, Grierson B A, Solomon W M, Tala T, deGrassie J S, Petty C C, Salmi A, Burrell K H 2017 Phys. Plasmas 24042501

    [14]

    Rice J, Cao N, Tala T, Chrystal C, Greenwald M, Hughes J, Marmar E, Reinke M, Rodriguez Fernandez P, Salmi A 2021 Nucl. Fusion 61026013

    [15]

    Zimmermann C, McDermott R, Angioni C, Duval B, Dux R, Fable E, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T, the ASDEX Upgrade Team 2023 Nucl. Fusion 63126006

    [16]

    Rice J, Duval B, Reinke M, Podpaly Y, Bortolon A, Churchill R, Cziegler I, Diamond P, Dominguez A, Ennever P, Fiore C, Granetz R, Greenwald M, Hubbard A, Hughes J, Irby J, Ma Y, Marmar E, McDermott R, Porkolab M, Tsujii N, Wolfe S 2011 Nucl. Fusion 51083005

    [17]

    Wang X, Lyu B, Lu X, Li Y, Solomon W M, Hao B, Chen J, Wang F, Fu J, Zhang H, Yang J, Bin B, He L, Li Y, Wan S, Gong X, Wan B, Ye M 2020 Plasma Sci. Technol. 22065104

    [18]

    Bae C, Jin Y, Lyu B, Hao B, Li Y, Zhang X, Liu H, Zhang H, Wang F, Fu J, Fu J, Huang J, Zeng L, Zang Q, Li Y, He L, Lu D 2024 Plasma Phys. Control. Fusion 66045020

    [19]

    Yang S, Na Y S, Na D, Park J K, Shi Y, Ko W, Lee S, Hahm T 2018 Nucl. Fusion 58066008

    [20]

    Zimmermann C F B, McDermott R M, Fable E, Angioni C, Duval B P, Dux R, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T 2022 Plasma Phys. Control. Fusion 64055020

    [21]

    Ohtani Y, Yoshida M, Honda M, Narita E 2021 AIP Adv. 11085306

    [22]

    Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, For The East Team And Collaborators 2022 Nucl. Fusion 62042010

    [23]

    Liu H, Jie Y, Ding W, Brower D, Zou Z, Qian J, Li W, Yang Y, Zeng L, Zhang S, Lan T, Wang S, Hanada K, Wei X, Hu L, Wan B 2016 JINST 11 C01049

    [24]

    Zang Q, Zhao J, Yang L, Hu Q, Xi X, Dai X, Yang J, Han X, Li M, Hsieh C L 2011 Rev. Sci. Instrum. 82063502

    [25]

    Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 8910H111

    [26]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 8511E428

    [27]

    Yin X H, Li Y Y, Fu J, Jiang D, Feng S Y, Gu Y Q, Cheng Y, Lyu B, Shi Y J, Ye M Y, Wan B N 2016 Rev. Sci. Instrum. 8711E539

    [28]

    Yin X, Li Y, Fu J, Jiang D, Lyu B, Shi Y, Ye M, Wan B 2019 Fusion Eng. Des. 148111282

    [29]

    Yoshida M, Koide Y, Takenaga H, Urano H, Oyama N, Kamiya K, Sakamoto Y, Kamada Y, Team T J 2006 Plasma Phys. Control. Fusion 481673

    [30]

    Tala T, Crombé K, De Vries P C, Ferreira J, Mantica P, Peeters A G, Andrew Y, Budny R, Corrigan G, Eriksson A, Garbet X, Giroud C, Hua M D, Nordman H, Naulin V, Nave M F F, Parail V, Rantamäki K, Scott B D, Strand P, Tardini G, Thyagaraja A, Weiland J, Zastrow K D, JET-EFDA Contributors 2007 Plasma Phys. Control. Fusion 49 B291

    [31]

    Ryter F, Dux R, Mantica P, Tala T 2010 Plasma Phys. Control. Fusion 52124043. Number:12

    [32]

    Yang J, Chen J, Wang F D, Li Y Y, Lyu B, Xiang D, Yin X H, Zhang H M, Fu J, Liu H Q, Zang Q, Chu Y Q, Liu J W, Wang X Y, Bin B, He L, Wan S K, Gong X Y, Ye M Y 2020 Acta Phys. Sin. 69055201

    [33]

    Bae C, Stacey W, Solomon W 2013 Nucl. Fusion 53043011

    [34]

    Bae C, Jin Y, Lyu B, Fu J, Wang F, Zhang H 2024 Comput. Phys. Commun. 296108992

    [35]

    GOLDSTON R J 1981 J. Comput. Phys. 4361

    [36]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159157

    [37]

    Solomon W, Burrell K, deGrassie J, Boedo J, Garofalo A, Moyer R, Muller S, Petty C, Reimerdes H 2011 Nucl. Fusion 51073010

    [38]

    Rice J E, Ince-Cushman A C, Reinke M L, Podpaly Y, Greenwald M J, LaBombard B, Marmar E S 2008 Plasma Phys. Control. Fusion 50124042

    [39]

    Kosuga Y, Diamond P H, Gürcan ff D 2010 Phys. Plasmas 17102313

    [40]

    Green B J, Team I I, Teams P 2003 Plasma Phys. Control. Fusion 45687

    [41]

    III R W B, Stoltzfus-Dueck T 2024 Plasma Phys. Control. Fusion 66065011

    [42]

    Parra F I, Barnes M 2015 Plasma Phys. Control. Fusionn 57045002

  • [1] 金仡飞, 张洪明, 尹相辉, 吕波, CheonhoBae, 叶凯萱, 盛回, 王士凡, 赵海林, 顾帅, 袁泓, 林子超, 傅盛宇, 卢迪安, 符佳, 王福地. EAST上RMP驱动等离子体自发旋转物理机制的实验研究.  , doi: 10.7498/aps.73.20241357
    [2] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , doi: 10.7498/aps.72.20222043
    [3] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究.  , doi: 10.7498/aps.72.20230620
    [4] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟.  , doi: 10.7498/aps.72.20230991
    [5] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , doi: 10.7498/aps.70.20202003
    [6] 陆勇俊, 杨溢, 王峰会, 楼康, 赵翔. 连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响.  , doi: 10.7498/aps.65.098102
    [7] 王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰. 晶圆键合和激光剥离工艺对GaN基垂直结构发光二极管芯片残余应力的影响.  , doi: 10.7498/aps.64.028501
    [8] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用.  , doi: 10.7498/aps.63.125204
    [9] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究.  , doi: 10.7498/aps.62.245206
    [10] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究.  , doi: 10.7498/aps.61.115207
    [11] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , doi: 10.7498/aps.59.5596
    [12] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究.  , doi: 10.7498/aps.58.8448
    [13] 江洋, 罗毅, 席光义, 汪莱, 李洪涛, 赵维, 韩彦军. AlGaN插入层对6H-SiC上金属有机物气相外延生长的GaN薄膜残余应力及表面形貌的影响.  , doi: 10.7498/aps.58.7282
    [14] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响.  , doi: 10.7498/aps.58.7025
    [15] 孔德军, 张永康, 陈志刚, 鲁金忠, 冯爱新, 任旭东, 葛 涛. 基于XRD的镀锌钝化膜残余应力试验研究.  , doi: 10.7498/aps.56.4056
    [16] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动.  , doi: 10.7498/aps.55.1307
    [17] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用.  , doi: 10.7498/aps.55.5451
    [18] 邵淑英, 范正修, 邵建达. ZrO2/SiO2多层膜中膜厚组合周期数及基底材料对残余应力的影响.  , doi: 10.7498/aps.54.3312
    [19] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运.  , doi: 10.7498/aps.52.1970
    [20] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究.  , doi: 10.7498/aps.50.1956
计量
  • 文章访问数:  53
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-06

/

返回文章
返回
Baidu
map