-
等离子体旋转及其剪切是影响聚变装置的关键参数之一,等离子体旋转的驱动和控制对未来聚变堆的稳定运行和约束改善都具有很大意义。目前靠外部动量注入的方式不足以在满足Q大于5的同时抑制电阻壁模不稳定性。因此,有必要对不依赖外部动量注入的等离子体自发旋转展开实验研究。为了更好地预测未来聚变装置中自发旋转速度的大小,本论文在东方超环托卡马克(EAST)上开展了残余应力与无量纲参数的定标研究,利用平衡中性束的方法进行了多次自发扭矩的实验测量,为未来托卡马克装置中等离子体自发旋转的预测提供实验依据。实验定标结果表明,芯部残余应力与 $\rho_*^{-1.80 \pm 1.26}$ 相关,而边界残余应力的定标则显示出与 $\rho_*^{1.26 \pm 0.63}$ 的依赖性,这表明随着装置尺寸的增大,未来托卡马克聚变堆中芯部的残余应力可能会增大,而边界残余应力则减小。芯部与边界残余应力的定标结果差异表明,在边界区域SOL区残余应力的产生过程中,有 E × B 流剪切以外的对称性破坏机制起主导作用。在自发扭矩与 $\nu_*$ 的定标之间发现芯部自发扭矩依赖于 $\nu_*^{0.21 \pm 0.18}$。结合芯部自发扭矩与归一化旋转半径、归一化碰撞率的定标结果,得到芯部自发扭矩的定标律为 $\rho_*^{-1.39 \pm 0.71} \nu_*^{-0.11 \pm 0.10}$。使用ITER氘-氚混合运行方案中的等离子体参数预测得到芯部自发扭矩大小为1.0 ±6.3 N·m,远小于之前DIII-D预测结果。Plasma rotation and its shear are key parameters influencing fusion devices. The prediction and control of plasma rotation velocity are of great significance for the stable operation and confinement improvement of future fusion reactors. External momentum injection methods are insuffcient to suppress resistive wall mode instability while achieving Q greater than 5 in International Thermonuclear Experimental Reactor (ITER). Therefore, it is necessary to conduct experimental research on intrinsic plasma rotation that does not rely on external momentum injection.To better predict the magnitude of intrinsic rotation velocity in future fusion devices, this experiment conducted a study on the scaling of residual stress and dimensionless parameters on EAST. Using the balanced neutral beam, multiple measurements of intrinsic torque were performed, providing experimental basis for the prediction of intrinsic rotation in future tokamak devices. The scaling results indicate that the core residual stress has a dependency on $\rho_*^{-1.80 \pm 1.26}$, while the scaling of edge residual stress shown a opposite trend with $\rho_*^{1.26} \pm 0.63$.This suggests that as the device size increases, the core residual stress in future large devices may increase, while the edge residual stress may decrease. The difference in scaling results between the core and edge residual stress indicates that in the edge region, there are symmetry-breaking mechanisms other than E × B flow shear dominating the generation of residual stress in the scrape-off layer (SOL).A relationship was found between intrinsic torque and $\nu_*$, revealing that core intrinsic torque depends on $\nu_*^{-0.21 \pm 0.18}$.Combining the scaling results of core intrinsic torque with gyroradius and normalized collisionality, the scaling law for core intrinsic torque is obtained as $\rho_*^{-1.39 \pm 0.71} \nu_*^{0.11 \pm 0.10}$.Using plasma parameters of ITER operation scenario 1, the core intrinsic torque in future ITER plasma is predicted to be 1.0 ±6.3 N · m, which is much smaller than predicted magnitude at DIII-D.
-
Keywords:
- tokamak /
- momentum transport /
- intrinsic rotation /
- scaling law
-
[1] Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51094027
[2] Diamond P, Kosuga Y, Gürcan ff, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53104019
[3] Ida K, Rice J 2014 Nucl. Fusion 54045001
[4] Rice J E 2016 Plasma Phys. Control. Fusion 58083001
[5] Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61124003
[6] Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89235001
[7] Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19052502
[8] Ida K, Miura Y, Matsuda T, Itoh K, Hidekuma S, Itoh S I, Jft-2M Group 1995 Phys. Rev. Lett. 741990
[9] Rice J, Ince-Cushman A, deGrassie J, Eriksson L G, Sakamoto Y, Scarabosio A, Bortolon A, Burrell K, Duval B, Fenzi-Bonizec C, Greenwald M, Groebner R, Hoang G, Koide Y, Marmar E, Pochelon A, Podpaly Y 2007 Nucl. Fusion 471618
[10] Yoshida M, Kamada Y, Takenaga H, Sakamoto Y, Urano H, Oyama N, Matsunaga G 2008 Phys. Rev. Lett. 100105002
[11] Solomon W M, Burrell K H, deGrassie J S, Budny R, Groebner R J, Kinsey J E, Kramer G J, Luce T C, Makowski M A, Mikkelsen D, Nazikian R, Petty C C, Politzer P A, Scott S D, Van Zeeland M A, Zarnstorff M C 2007 Plasma Phys. Control. Fusion 49 B313
[12] Solomon W M, Burrell K H, Garofalo A M, Kaye S M, Bell R E, Cole A J, deGrassie J S, Diamond P H, Hahm T S, Jackson G L, Lanctot M J, Petty C C, Reimerdes H, Sabbagh S A, Strait E J, Tala T, Waltz R E 2010 Phys. Plasmas 17056108
[13] Chrystal C, Grierson B A, Solomon W M, Tala T, deGrassie J S, Petty C C, Salmi A, Burrell K H 2017 Phys. Plasmas 24042501
[14] Rice J, Cao N, Tala T, Chrystal C, Greenwald M, Hughes J, Marmar E, Reinke M, Rodriguez Fernandez P, Salmi A 2021 Nucl. Fusion 61026013
[15] Zimmermann C, McDermott R, Angioni C, Duval B, Dux R, Fable E, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T, the ASDEX Upgrade Team 2023 Nucl. Fusion 63126006
[16] Rice J, Duval B, Reinke M, Podpaly Y, Bortolon A, Churchill R, Cziegler I, Diamond P, Dominguez A, Ennever P, Fiore C, Granetz R, Greenwald M, Hubbard A, Hughes J, Irby J, Ma Y, Marmar E, McDermott R, Porkolab M, Tsujii N, Wolfe S 2011 Nucl. Fusion 51083005
[17] Wang X, Lyu B, Lu X, Li Y, Solomon W M, Hao B, Chen J, Wang F, Fu J, Zhang H, Yang J, Bin B, He L, Li Y, Wan S, Gong X, Wan B, Ye M 2020 Plasma Sci. Technol. 22065104
[18] Bae C, Jin Y, Lyu B, Hao B, Li Y, Zhang X, Liu H, Zhang H, Wang F, Fu J, Fu J, Huang J, Zeng L, Zang Q, Li Y, He L, Lu D 2024 Plasma Phys. Control. Fusion 66045020
[19] Yang S, Na Y S, Na D, Park J K, Shi Y, Ko W, Lee S, Hahm T 2018 Nucl. Fusion 58066008
[20] Zimmermann C F B, McDermott R M, Fable E, Angioni C, Duval B P, Dux R, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T 2022 Plasma Phys. Control. Fusion 64055020
[21] Ohtani Y, Yoshida M, Honda M, Narita E 2021 AIP Adv. 11085306
[22] Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, For The East Team And Collaborators 2022 Nucl. Fusion 62042010
[23] Liu H, Jie Y, Ding W, Brower D, Zou Z, Qian J, Li W, Yang Y, Zeng L, Zhang S, Lan T, Wang S, Hanada K, Wei X, Hu L, Wan B 2016 JINST 11 C01049
[24] Zang Q, Zhao J, Yang L, Hu Q, Xi X, Dai X, Yang J, Han X, Li M, Hsieh C L 2011 Rev. Sci. Instrum. 82063502
[25] Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 8910H111
[26] Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 8511E428
[27] Yin X H, Li Y Y, Fu J, Jiang D, Feng S Y, Gu Y Q, Cheng Y, Lyu B, Shi Y J, Ye M Y, Wan B N 2016 Rev. Sci. Instrum. 8711E539
[28] Yin X, Li Y, Fu J, Jiang D, Lyu B, Shi Y, Ye M, Wan B 2019 Fusion Eng. Des. 148111282
[29] Yoshida M, Koide Y, Takenaga H, Urano H, Oyama N, Kamiya K, Sakamoto Y, Kamada Y, Team T J 2006 Plasma Phys. Control. Fusion 481673
[30] Tala T, Crombé K, De Vries P C, Ferreira J, Mantica P, Peeters A G, Andrew Y, Budny R, Corrigan G, Eriksson A, Garbet X, Giroud C, Hua M D, Nordman H, Naulin V, Nave M F F, Parail V, Rantamäki K, Scott B D, Strand P, Tardini G, Thyagaraja A, Weiland J, Zastrow K D, JET-EFDA Contributors 2007 Plasma Phys. Control. Fusion 49 B291
[31] Ryter F, Dux R, Mantica P, Tala T 2010 Plasma Phys. Control. Fusion 52124043. Number:12
[32] Yang J, Chen J, Wang F D, Li Y Y, Lyu B, Xiang D, Yin X H, Zhang H M, Fu J, Liu H Q, Zang Q, Chu Y Q, Liu J W, Wang X Y, Bin B, He L, Wan S K, Gong X Y, Ye M Y 2020 Acta Phys. Sin. 69055201
[33] Bae C, Stacey W, Solomon W 2013 Nucl. Fusion 53043011
[34] Bae C, Jin Y, Lyu B, Fu J, Wang F, Zhang H 2024 Comput. Phys. Commun. 296108992
[35] GOLDSTON R J 1981 J. Comput. Phys. 4361
[36] Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159157
[37] Solomon W, Burrell K, deGrassie J, Boedo J, Garofalo A, Moyer R, Muller S, Petty C, Reimerdes H 2011 Nucl. Fusion 51073010
[38] Rice J E, Ince-Cushman A C, Reinke M L, Podpaly Y, Greenwald M J, LaBombard B, Marmar E S 2008 Plasma Phys. Control. Fusion 50124042
[39] Kosuga Y, Diamond P H, Gürcan ff D 2010 Phys. Plasmas 17102313
[40] Green B J, Team I I, Teams P 2003 Plasma Phys. Control. Fusion 45687
[41] III R W B, Stoltzfus-Dueck T 2024 Plasma Phys. Control. Fusion 66065011
[42] Parra F I, Barnes M 2015 Plasma Phys. Control. Fusionn 57045002
计量
- 文章访问数: 53
- PDF下载量: 0
- 被引次数: 0