Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study of intrinsic torque distribution of L-mode plasma based on balanced neutral beam injection on EAST

YUAN Hong YIN Xianghui LV Bo JIN Yifei BAE Cheonho ZHANG Hongming FU Jia LIU Haiqing ZHAO Hailin ZANG Qing WANG Fudi XIANG Dong

Citation:

Experimental study of intrinsic torque distribution of L-mode plasma based on balanced neutral beam injection on EAST

YUAN Hong, YIN Xianghui, LV Bo, JIN Yifei, BAE Cheonho, ZHANG Hongming, FU Jia, LIU Haiqing, ZHAO Hailin, ZANG Qing, WANG Fudi, XIANG Dong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Plasma rotation and its shear are key parameters influencing the performance of fusion devices. The prediction and control of plasma rotation velocity are of great significance for improving the stable operation and confinement of future fusion reactors. External momentum injection methods are insufficient to suppress resistive wall mode instability while achieving Q greater than 5 in International Thermonuclear Experimental Reactor (ITER). Therefore, it is necessary to conduct experimental research on intrinsic plasma rotation that does not rely on external momentum injection. To better predict the magnitude of intrinsic rotation velocity in future fusion devices, we conduct an experimental study on the scaling of residual stress and dimensionless parameters on EAST. Using the balanced neutral beam, multiple measurements of intrinsic torque are performed, providing experimental basis for predicting the intrinsic rotation in future tokamak devices. The scaling results indicate that the core residual stress is dependent on $\rho_{\ast}^{-1.80\pm1.26}$, while the scaling of edge residual stress shows an opposite trend with $\rho _{\ast }^{1.26\pm0.63}$. This suggests that as the device size increases, the core residual stress in future large devices can increase, while the edge residual stress can decrease. The difference in scaling results between the core and edge residual stress indicates that in the edge region, the symmetry-breaking mechanism other than $\mathbf{E}\times\mathbf{B}$ flow shear dominates the generation of residual stress in the scrape-off layer (SOL). A relationship is found between intrinsic torque and $\nu _{\ast }$, revealing that the core intrinsic torque depends on $\nu _{\ast }^{-0.21\pm0.18}$. Combining the scaling results of core intrinsic torque with the gyroradius and normalized collisionality, the scaling law for core intrinsic torque is obtained to be $\rho _{\ast }^{-1.39\pm0.71}\nu _{\ast }^{0.11\pm0.10}$. Using plasma parameters of ITER operation scenario 1, the core intrinsic torque in future ITER plasma is predicted to be $1.0\pm6.3$ ${\mathrm{N}}{\cdot} {\mathrm{m}}$, which is much smaller than the predicted magnitude at DIII-D.
  • 图 1  EAST上NBI和CXRS系统的布局

    Figure 1.  Layout of NBI and CXRS systems at EAST

    图 2  时间演化: (a)等离子体电流; (b)等离子体储能; (c)中性束功率; (d)平均电子密度; (e)芯部电子温度; (f)芯部离子温度; (g)芯部环向旋转速度

    Figure 2.  Time evolutions of: (a) plasma current; (b) stored energy; (c) neutral beam source power; (d) line-averaged electron density; (e) central electron temperature; (f) central ion temperature; and (g) central toroidal rotation velocity.

    图 3  $ \# $90833不同驱动方案下NBI扭矩密度和环向旋转速度的比较. (a) NBI的总输入扭密度; (b) 等离子体环向旋转速度

    Figure 3.  $ \# $90833 Comparison of NBI torque density and toroidal rotation velocity among different momentum driving schemes. (a) total input torque densities from NBIs; (b) toroidal rotation velocities.

    图 4  放电$ \# $90833在4.69 s时: (a)电子密度和安全因子; (b)电子和离子温度; (c)环向旋转速度分布

    Figure 4.  Profiles of: (a) electron density and safety factor, (b) electron and ion temperature, and (c) toroidal rotation velocity at 4.69 s of discharge $ \# $90833.

    图 5  (a) TransROTA计算的速度相关项的径向分布; (b) TRANSP/NUBEAM计算的NBI力矩密度、速度相关项以及自发扭矩密度之间的对比

    Figure 5.  (a) Radial distributions of TransROTA-calculated velocity-dependent terms (b) Comparison among TRANSP/NUBEAM-calculated NBI injected torque densities, veolocity-dependent terms and intrinsic torque densities.

    图 6  (a) NBI力矩密度和自发扭矩力矩密度的径向分布; (b) 体积分后的力矩分布. 两种不同的自发扭矩定义及其积分区域如图(a)和(b)所示

    Figure 6.  (a) Radial distributions of NBI and intrinsic torque densities; (b) volume-integrated torque profiles. Two different definitions of intrinsic torque and their integral ranges are shown in (a) and (b).

    图 7  自发扭矩与$ \rho_{\ast} $的定标结果

    Figure 7.  Scaling results of intrinsic torques as a function of $ \rho_{\ast} $.

    图 8  芯部自发扭矩与$ \nu_{\ast} $的定标结果

    Figure 8.  Scaling results of intrinsic torques as a function of $ \nu_{\ast} $.

    图 9  芯部自发扭矩与压力梯度的定标关系

    Figure 9.  Scaling results of core intrinsic torques as a function of pressure gradients.

    图 10  边界自发扭矩与压力梯度的定标关系

    Figure 10.  Scaling results of edge intrinsic torques as a function of pressure gradients.

    Baidu
  • [1]

    Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51 094027Google Scholar

    [2]

    Diamond P, Kosuga Y, Gürcan ff, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53 104019Google Scholar

    [3]

    Ida K, Rice J 2014 Nucl. Fusion 54 045001Google Scholar

    [4]

    Rice J E 2016 Plasma Phys. Control. Fusion 58 083001Google Scholar

    [5]

    Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61 124003Google Scholar

    [6]

    Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89 235001Google Scholar

    [7]

    Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19 052502Google Scholar

    [8]

    Ida K, Miura Y, Matsuda T, Itoh K, Hidekuma S, Itoh S I, Jft-2 M Group 1995 Phys. Rev. Lett. 74 1990Google Scholar

    [9]

    Rice J, Ince-Cushman A, deGrassie J, Eriksson L G, Sakamoto Y, Scarabosio A, Bortolon A, Burrell K, Duval B, Fenzi-Bonizec C, Greenwald M, Groebner R, Hoang G, Koide Y, Marmar E, Pochelon A, Podpaly Y 2007 Nucl. Fusion 47 1618Google Scholar

    [10]

    Yoshida M, Kamada Y, Takenaga H, Sakamoto Y, Urano H, Oyama N, Matsunaga G 2008 Phys. Rev. Lett. 100 105002Google Scholar

    [11]

    Solomon W M, Burrell K H, deGrassie J S, Budny R, Groebner R J, Kinsey J E, Kramer G J, Luce T C, Makowski M A, Mikkelsen D, Nazikian R, Petty C C, Politzer P A, Scott S D, Van Zeeland M A, Zarnstorff M C 2007 Plasma Phys. Control. Fusion 49 B313Google Scholar

    [12]

    Solomon W M, Burrell K H, Garofalo A M, Kaye S M, Bell R E, Cole A J, deGrassie J S, Diamond P H, Hahm T S, Jackson G L, Lanctot M J, Petty C C, Reimerdes H, Sabbagh S A, Strait E J, Tala T, Waltz R E 2010 Phys. Plasmas 17 056108Google Scholar

    [13]

    Chrystal C, Grierson B A, Solomon W M, Tala T, deGrassie J S, Petty C C, Salmi A, Burrell K H 2017 Phys. Plasmas 24 042501Google Scholar

    [14]

    Rice J, Cao N, Tala T, Chrystal C, Greenwald M, Hughes J, Marmar E, Reinke M, Rodriguez Fernandez P, Salmi A 2021 Nucl. Fusion 61 026013Google Scholar

    [15]

    Zimmermann C, McDermott R, Angioni C, Duval B, Dux R, Fable E, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T, the ASDEX Upgrade Team 2023 Nucl. Fusion 63 126006Google Scholar

    [16]

    Rice J, Duval B, Reinke M, Podpaly Y, Bortolon A, Churchill R, Cziegler I, Diamond P, Dominguez A, Ennever P, Fiore C, Granetz R, Greenwald M, Hubbard A, Hughes J, Irby J, Ma Y, Marmar E, McDermott R, Porkolab M, Tsujii N, Wolfe S 2011 Nucl. Fusion 51 083005Google Scholar

    [17]

    Wang X, Lyu B, Lu X, Li Y, Solomon W M, Hao B, Chen J, Wang F, Fu J, Zhang H, Yang J, Bin B, He L, Li Y, Wan S, Gong X, Wan B, Ye M 2020 Plasma Sci. Technol. 22 065104Google Scholar

    [18]

    Bae C, Jin Y, Lyu B, Hao B, Li Y, Zhang X, Liu H, Zhang H, Wang F, Fu J, Fu J, Huang J, Zeng L, Zang Q, Li Y, He L, Lu D 2024 Plasma Phys. Control. Fusion 66 045020Google Scholar

    [19]

    Yang S, Na Y S, Na D, Park J K, Shi Y, Ko W, Lee S, Hahm T 2018 Nucl. Fusion 58 066008Google Scholar

    [20]

    Zimmermann C F B, McDermott R M, Fable E, Angioni C, Duval B P, Dux R, Salmi A, Stroth U, Tala T, Tardini G, Pütterich T 2022 Plasma Phys. Control. Fusion 64 055020Google Scholar

    [21]

    Ohtani Y, Yoshida M, Honda M, Narita E 2021 AIP Adv. 11 085306Google Scholar

    [22]

    Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, For The East Team And Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [23]

    Liu H, Jie Y, Ding W, Brower D, Zou Z, Qian J, Li W, Yang Y, Zeng L, Zhang S, Lan T, Wang S, Hanada K, Wei X, Hu L, Wan B 2016 JINST 11 C01049Google Scholar

    [24]

    Zang Q, Zhao J, Yang L, Hu Q, Xi X, Dai X, Yang J, Han X, Li M, Hsieh C L 2011 Rev. Sci. Instrum. 82 063502Google Scholar

    [25]

    Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 89 10H111Google Scholar

    [26]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 85 11E428Google Scholar

    [27]

    Yin X H, Li Y Y, Fu J, Jiang D, Feng S Y, Gu Y Q, Cheng Y, Lyu B, Shi Y J, Ye M Y, Wan B N 2016 Rev. Sci. Instrum. 87 11E539Google Scholar

    [28]

    Yin X, Li Y, Fu J, Jiang D, Lyu B, Shi Y, Ye M, Wan B 2019 Fusion Eng. Des. 148 111282Google Scholar

    [29]

    Yoshida M, Koide Y, Takenaga H, Urano H, Oyama N, Kamiya K, Sakamoto Y, Kamada Y, Team T J 2006 Plasma Phys. Control. Fusion 48 1673Google Scholar

    [30]

    Tala T, Crombé K, De Vries P C, Ferreira J, Mantica P, Peeters A G, Andrew Y, Budny R, Corrigan G, Eriksson A, Garbet X, Giroud C, Hua M D, Nordman H, Naulin V, Nave M F F, Parail V, Rantamäki K, Scott B D, Strand P, Tardini G, Thyagaraja A, Weiland J, Zastrow K D, JET-EFDA Contributors 2007 Plasma Phys. Control. Fusion 49 B291Google Scholar

    [31]

    Ryter F, Dux R, Mantica P, Tala T 2010 Plasma Phys. Control. Fusion 52 124043. Number: 12

    [32]

    Yang J, Chen J, Wang F D, Li Y Y, Lyu B, Xiang D, Yin X H, Zhang H M, Fu J, Liu H Q, Zang Q, Chu Y Q, Liu J W, Wang X Y, Bin B, He L, Wan S K, Gong X Y, Ye M Y 2020 Acta Phys. Sin. 69 055201Google Scholar

    [33]

    Bae C, Stacey W, Solomon W 2013 Nucl. Fusion 53 043011Google Scholar

    [34]

    Bae C, Jin Y, Lyu B, Fu J, Wang F, Zhang H 2024 Comput. Phys. Commun. 296 108992Google Scholar

    [35]

    GOLDSTON R J 1981 J. Comput. Phys. 43 61Google Scholar

    [36]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [37]

    Solomon W, Burrell K, deGrassie J, Boedo J, Garofalo A, Moyer R, Muller S, Petty C, Reimerdes H 2011 Nucl. Fusion 51 073010Google Scholar

    [38]

    Rice J E, Ince-Cushman A C, Reinke M L, Podpaly Y, Greenwald M J, LaBombard B, Marmar E S 2008 Plasma Phys. Control. Fusion 50 124042Google Scholar

    [39]

    Kosuga Y, Diamond P H, Gürcan ff D 2010 Phys. Plasmas 17 102313Google Scholar

    [40]

    Green B J, Team I I, Teams P 2003 Plasma Phys. Control. Fusion 45 687Google Scholar

    [41]

    III R W B, Stoltzfus-Dueck T 2024 Plasma Phys. Control. Fusion 66 065011Google Scholar

    [42]

    Parra F I, Barnes M 2015 Plasma Phys. Control. Fusionn 57 045002Google Scholar

  • [1] Jin Yi-Fei, Zhang Hong-Ming, Yin Xiang-Hui, Lü Bo, Cheonho Bae, Ye Kai-Xuan, Sheng Hui, Wang Shi-Fan, Zhao Hai-Lin, Gu Shuai, Yuan Hong, Lin Zi-Chao, Fu Sheng-Yu, Lu Di-An, Fu Jia, Wang Fu-Di. Experimental investigations on physical mechanisms of RMP-induced intrinsic rotations at EAST. Acta Physica Sinica, doi: 10.7498/aps.73.20241357
    [2] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20222043
    [3] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230620
    [4] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230991
    [5] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, doi: 10.7498/aps.70.20202003
    [6] Lu Yong-Jun, Yang Yi, Wang Feng-Hui, Lou Kang, Zhao Xiang. Effect of continuously graded functional layer on curvature and residual stress of solid oxide fuel cell in initial reduction process. Acta Physica Sinica, doi: 10.7498/aps.65.098102
    [7] Wang Hong, Yun Feng, Liu Shuo, Huang Ya-Ping, Wang Yue, Zhang Wei-Han, Wei Zheng-Hong, Ding Wen, Li Yu-Feng, Zhang Ye, Guo Mao-Feng. Effect of wafer bonding and laser liftoff process on residual stress of GaN-based vertical light emitting diode chips. Acta Physica Sinica, doi: 10.7498/aps.64.028501
    [8] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, doi: 10.7498/aps.63.125204
    [9] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, doi: 10.7498/aps.62.245206
    [10] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.61.115207
    [11] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.59.5596
    [12] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.58.8448
    [13] Jiang Yang, Luo Yi, Xi Guang-Yi, Wang Lai, Li Hong-Tao, Zhao Wei, Han Yan-Jun. Effect of AlGaN intermediate layer on residual stress control and surface morphology of GaN grown on 6H-SiC substrate by metal organic vapour phase epitaxy. Acta Physica Sinica, doi: 10.7498/aps.58.7282
    [14] Cen Min, Zhang Yue-Guang, Chen Wei-Lan, Gu Pei-Fu. Influences of deposition rate and oxygen partial pressure on residual stress of HfO2 films. Acta Physica Sinica, doi: 10.7498/aps.58.7025
    [15] Kong De-Jun, Zhang Yong-Kang, Chen Zhi-Gang, Lu Jin-Zhong, Feng Ai-Xin, Ren Xu-Dong, Ge Tao. Experimental study of residual stress of galvanized passive film based on XRD. Acta Physica Sinica, doi: 10.7498/aps.56.4056
    [16] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.55.1307
    [17] Di Yu-Xian, Ji Xin-Hua, Hu Ming, Qin Yu-Wen, Chen Jin-Long. Residual stress measurement of porous silicon thin film by substrate curvature method. Acta Physica Sinica, doi: 10.7498/aps.55.5451
    [18] Shao Shu-Ying, Fan Zheng-Xiu, Shao Jian-Da. Influences of the period of repeating thickness on the stress of alternative high and low refractivity ZrO2/SiO2 multilayers. Acta Physica Sinica, doi: 10.7498/aps.54.3312
    [19] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, doi: 10.7498/aps.52.1970
    [20] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, doi: 10.7498/aps.50.1956
Metrics
  • Abstract views:  239
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2024
  • Accepted Date:  09 February 2025
  • Available Online:  06 March 2025

/

返回文章
返回
Baidu
map