搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HL-2A上H模脱靶与芯部约束兼容性的集成模拟与实验验证

舒宇坤 王占辉 徐欣亮 吴雪科 王卓 吴婷 周雨林 付彩龙 钟翊君 余鑫 李永高 何小雪 杨曾辰 昆仑集成模拟设计组

引用本文:
Citation:

HL-2A上H模脱靶与芯部约束兼容性的集成模拟与实验验证

舒宇坤, 王占辉, 徐欣亮, 吴雪科, 王卓, 吴婷, 周雨林, 付彩龙, 钟翊君, 余鑫, 李永高, 何小雪, 杨曾辰, 昆仑集成模拟设计组

Integrated modeling and experimental validation of H-mode divertor detachment and core confinement compatibility on HL-2A tokamak

SHU Yukun, WANG Zhanhui, XU Xinliang, WU Xueke, WANG Zhuo, WU Ting, ZHOU Yulin, FU Cailong, ZHONG Yijun, YU Xin, LI Yonggao, HE Xiaoxue, YANG Zengchen, Kunlun Integrated Simulation and Design Group
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 托卡马克高约束H模条件下偏滤器脱靶和热流控制是当前磁约束核聚变研究中的关键物理问题. 脱靶对H模边界输运物理尤其是对芯部约束兼容性的影响是研究偏滤器脱靶物理的关键问题. 本文获得了HL-2A装置H模等离子体偏滤器脱靶与芯部约束兼容的实验结果, 采用OMFIT集成模拟平台, 新发展了偏滤器靶板区的神经网络快速集成模拟方法, 率先采用该快速集成模拟方法开展HL-2A第39007炮高约束模式下, 边界偏滤器脱靶与芯部约束兼容性的集成模拟研究, 经验证集成模拟结果与实验结果相吻合. 通过进一步分析发现: HL-2A装置H模脱靶情况下, 在芯部$ 0.1 < \rho \leqslant {\mathrm{ }}0.5 $的区域内高极向波数($ {k}_{\theta }{\rho }_{{\mathrm{s}}} $>1)模式下的湍性输运以离子温度梯度(ITG)模主导, 在芯部$ 0.5 < \rho \leqslant {\mathrm{ }}0.7 $的区域内的湍性输运以电子湍流主导; 而边界则是在归一化极向波数$ {k}_{\theta }{\rho }_{{\mathrm{s}}} < 2 $的情况下由电子湍流主导, $ {k}_{\theta }{\rho }_{{\mathrm{s}}} > 2 $的情况下则以ITG为主, 并伴有少量的电子湍流. 本文研究结果为托卡马克装置芯边耦合物理研究提供了一定的集成模拟与实验验证基础.
    The divertor detachment and heat flux control under high-confinement H-mode conditions in tokamaks represent critical physical challenges in current magnetic confinement fusion research. Understanding the influence of detachment on H-mode boundary transport physics, particularly its compatibility with core confinement, is central to resolving divertor detachment physics. In this study, experimental results on divertor detachment and core confinement compatibility in H-mode plasma from the HL-2A tokamak are presented. On the objective MHD framework for integrated tasks (OMFIT) integrated modeling platform, a novel neural network-based fast integrated modeling method for the divertor target region is developed by integrating a new edge neural network module (Kun-Lun Neural Networks, KLNN) to enhance divertor, scrape-off-layer and edge pedestal fast prediction capability. For the first time, this method is used to conduct integrated simulations of divertor detachment and core confinement compatibility in HL-2A discharge #39007 under high-confinement mode. The simulation results are validated with experimental measurements, demonstrating that they are well consistent. Further analysis reveals that in HL-2A H-mode detachment scenarios, turbulent transport in the core region ($ 0.1 < \rho \leqslant 0.5 $) with high poloidal wave numbers $ ({k}_{\theta }{\rho }_{{\mathrm{s}}} > 1 $) is dominated by ion temperature gradient (ITG) mode, while electron-driven turbulence prevails in the region $ (0.5 < \rho \leqslant 0.7) $. In the boundary region, electron turbulence dominates at low normalized poloidal wave numbers ($ {k}_{\theta }{\rho }_{{\mathrm{s}}} < 2 $), whereas ITG modes become predominant at higher wave numbers ($ {k}_{\theta }{\rho }_{{\mathrm{s}}} > 2 $), accompanied by minor electron turbulence contributions. The research results of this work provide a certain foundation for integrated simulation and experimental verification in the study of core-edge coupling physics in tokamak devices and some insights for understanding detachment-compatible H-mode scenarios in the next-step fusion devices.
  • 图 1  包含KLNN程序的OMFIT等离子体剖面集成模拟工作流

    Fig. 1.  Integrated simulation workflow of OMFIT plasma profiles incorporating KLNN program.

    图 2  KLBJ-NN 程序的神经网络结构

    Fig. 2.  Neural network structure of KLBJ-NN program.

    图 3  KLTJ-NN 程序的神经网络结构

    Fig. 3.  Neural network structure of KLTJ-NN program.

    图 4  HL-2A装置第39007炮等离子体放电参数随时间演化图 (a)等离子体储能; (b)等离子体电流; (c)电子线平均密度; (d)归一化比压$ {\beta }_{{\mathrm{n}}} $; (e) NBI, ECRH和 LHCD辅助加热功率; (f) $ {D}_{{\mathrm{\alpha }}} $射线

    Fig. 4.  Time evolution of the dischargement parameters of the shot #39007 in HL-2A: (a) Plasma stored energy; (b) plasma current; (c) average electron line density; (d) $ {\beta }_{{\mathrm{n}}} $; $ \left({\mathrm{e}}\right) $ auxiliary heating power $ {P}_{{\mathrm{N}}{\mathrm{B}}{\mathrm{I}}} $, $ {P}_{{\mathrm{E}}{\mathrm{C}}{\mathrm{R}}{\mathrm{H}}} $ and $ {P}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{C}}{\mathrm{D}}} $; (f) $ {D}_{{\mathrm{\alpha }}} $ray.

    图 5  (a)真空室区等离子体辐射强度随时间演化图; (b)偏滤器靶板区等离子体辐射强度随时间演化图

    Fig. 5.  (a) Time evolution of plasma radiation intensity in the vacuum chamber area; (b) time evolution of plasma radiation intensity in the divertor target plate area.

    图 6  等离子体边界靶板探针测得的热流通量随时间演化图

    Fig. 6.  Time evolution of heat flux measured by the plasma boundary target plate probe.

    图 7  等离子体边界靶板探针测得的离子饱和流强度随时间演化图

    Fig. 7.  Time evolution of ion saturated current intensity measured by the plasma boundary target plate probe.

    图 8  第39007炮在1320 ms时的实验值与输入剖面 (a)电子密度剖面; (b)电子温度剖面

    Fig. 8.  Experiment and input profiles of the shot #39007 at the 1320 ms: (a) Electron density; (b) electron temperature.

    图 9  第39007炮在1320 ms时刻的实验值与集成模拟初始输入剖面 (a)离子温度$ {T}_{{\mathrm{i}}} $; (b)旋转速度$ \omega $

    Fig. 9.  Experimental values and the initial input profiles of the integrated simulation of the shot #39007 at the 1320 ms: (a) Ion temperature $ {T}_{{\mathrm{i}}} $; (b) rotation $ \omega $.

    图 10  OMFIT集成平台TGYRO程序中不同物理量第0次和第10次迭代结果对比 (a)离子温度$ {T}_{{\mathrm{i}}} $; (b)电子温度$ {T}_{{\mathrm{e}}} $; (c)旋转速度$ \omega $

    Fig. 10.  Comparison of the results of the 0 th and 10 th iterations of different physical quantities in the TGYRO program of the OMFIT integrated platform: (a) Ion temperature $ {T}_{{\mathrm{i}}} $; (b) electron temperature $ {T}_{{\mathrm{e}}} $; (c) rotation $ \omega $.

    图 11  OMFIT集成平台TGYRO程序中各物理量不同径向位置最后10次迭代演化结果 (a)离子温度$ {T}_{{\mathrm{i}}} $; (b)电子温度$ {T}_{{\mathrm{e}}} $; (c)旋转速度$ \omega $.

    Fig. 11.  Evolution results of the last 10 iterations of various physical quantities at different radial positions in the TGYRO program of the OMFIT integrated platform: (a) Ion temperature $ {T}_{{\mathrm{i}}} $; (b) electron temperature $ {T}_{{\mathrm{e}}} $; (c) rotation $ \omega . $

    图 12  第39007炮在1320 ms时刻各物理量剖面的模拟结果与实验结果对照 (a)电子密度$ {n}_{{\mathrm{e}}} $; (b)电子温度$ {T}_{{\mathrm{e}}} $; (c)离子温度$ {T}_{{\mathrm{i}}} $; (d)旋转速度$ \omega $

    Fig. 12.  Comparison between the simulation results and experimental results of the physical quantity profiles of the shot #39007 at the 1320 ms: (a) Electron density $ {n}_{{\mathrm{e}}} $; (b) electron temperature $ {T}_{{\mathrm{e}}} $; (c) ion temperature $ {T}_{{\mathrm{i}}} $;$(d) rotation $ \omega . $

    图 13  第39007炮1320 ms时刻压强剖面的实验与模拟对照

    Fig. 13.  Comparison of experiment and simulation pressure profiles of the shot # 39007 at the 1320 ms.

    图 14  第 39007 炮在1320 ms时刻的各成分电流剖面

    Fig. 14.  Current profiles of each composition of the shot #39007 at the 1320 ms.

    图 15  第39007炮1320 ms时刻NBI注入的能量密度沉积分布

    Fig. 15.  Energy density deposition distribution of NBI of the shot # 39007 at the 1320 ms.

    图 16  第39007炮放电在1320 ms时刻模拟后得到的 (a)离子能量通量和(b)电子能量通量

    Fig. 16.  Ion energy flux (a) and electron energy flux (b) of the shot #39007 at the 1320 ms after simulation.

    图 17  HL-2A装置第39007炮在1320 ms, $ \rho =0.1—0.99 $区域内最不稳定的两支本征模式的频谱

    Fig. 17.  Frequency spectrum of the two most unstable eigenmodes in the $ \rho =0.1-0.99 $ region of the shot #39007 at the 1320 ms in HL-2A.

    图 18  39007炮在1320 ms, $ \rho =0.3, 0.6, 0.9, 0.95 $处线性不稳定性的增长率与波数的关系(蓝色为离子抗磁漂移方向, 红色为电子抗磁漂移方向)

    Fig. 18.  Relationship between the growth rate of linear instability and the wave number in the $ \rho =0.3, {\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}0.6, {\mathrm{ }}0.9, {\mathrm{ }}0.95 $ of the shot #39007 at the 1320 ms (The blue color indicates the direction of the ion diamagnetic drift, the red color indicates the direction of the electron diamagnetic drift).

    表 1  HL-2A #39007炮1320 ms时刻等离子体参数的实验值与模拟初始输入值对比表

    Table 1.  Comparison table of experimental values and initial input values of simulation for plasma parameters of the shot #39007 at the 1320 ms in HL-2A.

    物理量实验值模拟初始输入值
    等离子体电流/kA150150
    纵场强度/T1.331.33
    NBI功率/kW600600
    ECRH功率/kW850850
    LHCD功率/kW450450
    欧姆电流占比0.60
    NBI驱动电流占比0.13
    自举电流占比0.27
    芯部离子温度/keV0.510.52
    芯部电子温度/keV2.252.26
    芯部电子密度/(1019 m–3)2.622.52
    电子线平均密度/(1019 m–3)1.831.91
    Greenwald密度极限比值0.420.43
    q953.323.07
    归一化比压1.671.75
    下载: 导出CSV

    表 2  HL-2A #39007炮脱靶前后时段平均的储能、能量约束时间以及$ {H}_{98} $因子变化对比表

    Table 2.  The comparison table of Changes in average stored energy, average energy confinement time and average $ {H}_{98} $ factor during the time periods before and after detachment of the shot #39007 in HL-2A.

    储能/kJ能量约束时间/ms$ {H}_{98} $因子
    脱靶前时间段
    (1100—1180 ms)
    29.2 ± 1.69919.86 ±1.241.06 ± 0.069
    脱靶后时间段
    (1300—1380 ms)
    27.8 ± 1.88318.96 ± 1.251.02 ± 0.066
    下降百分比/%4.84.53.8
    下载: 导出CSV
    Baidu
  • [1]

    孙有文, 仇志勇, 万宝年 2024 73 175202Google Scholar

    Sun Y W, Qiu Z Y, Wan B N 2024 Acta Phys. Sin. 73 175202Google Scholar

    [2]

    Ida K, Fujita T 2018 Plasma Phys. Control. Fusion 60 033001Google Scholar

    [3]

    Leonard A W 2018 Plasma Phys. Control. Fusion 60 044001Google Scholar

    [4]

    Wang L, Wang L, Wang H Q, Eldon D, Yuan Q P, Ding S, Li K D, Garofalo A M, Gong X Z, Xu G S, Guo H Y, Wu K, Meng L Y, Xu J C, Liu J B, Chen M W, Zhang B, Duan Y M, Ding F, Yang Z S, Qian J P, Huang J, Ren Q L, Leonard A W, Fenstermacher M, Lasnier C, Watkins J G, Shafer M W, Barr J, Weisberg D, McClenaghan J, Hanson J, Hyatt A, Osborne T, Thomas D, Humphreys D, Buttery R J, Luo G N, Xiao B J, Wan B N, Li J G 2021 Nat. Commun. 12 1365Google Scholar

    [5]

    孟令义 2022 博士学位论文 (合肥: 中国科学技术大学)

    Meng L Y 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [6]

    Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W C, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M, 2023 Plasma Sci. Technol. 25 015102Google Scholar

    [7]

    秦晨晨, 牟茂淋, 陈少永 2024 72 045203

    Qin C C, Mou M L, Chen S Y 2023 Acta Phys. Sin. 72 045203

    [8]

    龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏 2024 72 045203

    Long T, Ke R, Wu T, Gao J M, Cai L Z, Wang Z H, Xu M 2024 Acta Phys. Sin. 73 088901

    [9]

    Luce T C, Challis C D, Ide S, Joffrin E, Kamada Y, Politzer P A, Schweinzer J, Sips A C C, Stober J, Giruzzi G, Kessel C E, Murakami M, Na Y S, Park J M, Polevoi A R, Budny R V, Citrin J, Garcia J, Hayashi N, Hobirk J, Hudson B F, Imbeaux F, Isayama A, McDonald D C, Nakano T, Oyama N, Parail V V, Petrie T W, Petty C C, Suzuki T, Wade M R, the ITPA Integrated Operation Scenario Topical Group Members, the ASDEX-Upgrade Team, the DIII-D Team, JET EFDA Contributors, the JT-60U Team 2014 Nucl. Fusion 54 013015Google Scholar

    [10]

    Imbeaux F, Pinches S D, Lister J B, Buravand Y, Casper T, Duval B, Guillerminet B, Hosokawa M, Houlberg W, Huynh P, Kim S H, Manduchi G, Owsiak M, Palak B, Plociennik M, Rouault G, Sauter O, Strand P 2015 Nucl. Fusion 55 123006Google Scholar

    [11]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Candy J, Wang Z, Luna C J, Izzo V A, Grierson B A, Snyder P B, Holland C, Penna J, Lu G, Raum P, McCubbin A, Orlov D M, Belli E A, Ferraro N M, Prater R, Osborne T H, Turnbull A D, Staebler G M, the ATOM Team 2015 Nucl. Fusion 55 083008Google Scholar

    [12]

    Zheng J X, Song Y T, Huang X Y, Lu K, Xi W B, Ding K Z, Ye B, Niu E W 2013 Plasma Sci. Technol. 15 152Google Scholar

    [13]

    罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组 2024 73 095204

    Luo Y M, Wang Z H, Chen J L, Wu X K, Fu C L, He X X, Liu L, Yang Z C, Li Y G, Gao J M, Du H R, Kunlun Integrated Simulation and Design Group 2022 Acta Phys. Sin. 71 075201

    [14]

    罗一鸣 2022 硕士学位论文 (成都: 核工业西南物理研究院)

    Luo Y M, 2022 MS Thesis (ChenDu: Southwestern Institute of Physics

    [15]

    John H S, Taylor T S, Lin-Liu Y R, Turnbull A D 1994 Plasma Phys. Controlled Fusion 3 603

    [16]

    Lao L L, John H S, Stambaugh R D, Kellman A G, Pfeiffer W, 1985 Nucl. Fusion 25 1421Google Scholar

    [17]

    Pan C, Staebler G M, Lao L L, Garofalo A M, Gong X, Ren Q, Smith S P 2017 Nucl. Fusion 57 036018Google Scholar

    [18]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [19]

    Yang C, Bonoli P T, Wright J C, Ding B J, Parker R, Shiraiwa S, Li M H 2014 Plasma Phys. Control. Fusion 56 125003Google Scholar

    [20]

    樊浩, 陈少永, 牟茂淋, 刘泰齐, 张业民, 唐昌建 2024 73 095204Google Scholar

    Fan H, Chen S Y, Mou M L, Liu T Q, Zhang Y M, Tang C J 2024 Acta Phys. Sin. 73 095204Google Scholar

    [21]

    Kritz A H, Hsuan H, Goldfinger R C 1982 Heat. Toroid. Plasmas 83 008980

    [22]

    Beurskens M N A, Osborne T H, Schneider P A, Wolfrum E, Frassinetti L, Groebner R, Lomas P, Nunes I, Saarelma S, Scannell R, Snyder P B, Zarzoso D, Balboa I, Bray B, Brix M, Flanagan J, Giroud C, Giovannozzi E, Kempenaars M, Loarte A, de la Luna E, Maddison G, Maggi C F, McDonald D, Pasqualotto R, Saibene G, Sartori R, Solano E R, Walsh M, Zabeo L, The DIII-D Team, The ASDEX Upgrade Team, JET-EFDA Contributors 2011 Phys. Plasmas 18 056120Google Scholar

    [23]

    Moscheni M, Wigram M, Wu H, Meineri C, Carati C, De Marchi E, Greenwald M, Innocente P, LaBombard B, Subba F, Zanino R 2025 Nucl. Fusion 65 026025Google Scholar

    [24]

    Cowley C, Kuang A Q, Moulton D, Lore J D, Canik J, Umansky M, Wigram M, Ballinger S, Lipschultz B, Bonnin X 2023 Plasma Phys. Control. Fusion 65 035011Google Scholar

    [25]

    Liang J H, Liu S F, Wang H P 2022 Nucl. Fusion Plasma Phys. 42 164

    [26]

    刘自结 2022 博士学位论文 (合肥: 中国科学技术大学)

    Liu Z J 2022 Ph. D. Dissertation (HeFei: University of Science and Technology of China

    [27]

    汪金鑫 2022 博士学位论文 (合肥: 中国科学技术大学)

    Wang J X 2022 Ph. D. Dissertation (HeFei: University of Science and Technology of China

    [28]

    Zhu X B, Xia F, Yang Z 2024 Nucl. Fusion Plasma Phys. 44 149

    [29]

    Kinsey J E, Staebler G M, Candy J, Waltz R E, Budny R V 2011 Nucl. Fusion 51 083001Google Scholar

    [30]

    G M Staebler, J Candy, R E Waltz, J E Kinsey, W M Solomon 2013 Phys. Rev. Lett. 110 055003Google Scholar

    [31]

    Waltz R E, Staebler G M, Dorland W, Hammett G W, Kotschenreuther M, Konings J A 1997 Phys. Plasmas 4 2482Google Scholar

    [32]

    Bosch H S, Hale G M 1992 Nucl. Fusion 32 611Google Scholar

    [33]

    Marin M, Camenen Y, Bourdelle C, Casson F J, Coosemans R, Garzott L, the TCV Team 2025 Nucl. Fusion 65 036015Google Scholar

    [34]

    Belli E A, Candy J 2012 Plasma Phys. Control. Fusion 54 015015Google Scholar

    [35]

    Perin M, Chandre C, Tassi E, 2016 J. Phys. A: Math. Theor. 49 305501Google Scholar

    [36]

    Dudkovskaia A V, Connor J W, Dickinson D, Hill P, Imada K, Leigh S, Wilson H R 2023 Nucl. Fusion 63 126040Google Scholar

    [37]

    Kates-Harbeck J, Svyatkovskiy A, Tang W 2019 Nature 568 526Google Scholar

    [38]

    Tang W M, Rewoldt G 1993 Phys. Fluids B Plasma Phys. 5 2451Google Scholar

    [39]

    Tang W M, Rewoldt G 1978 Nucl. Fusion 18 1089Google Scholar

    [40]

    李慧 2021 博士学位论文 (大连: 大连理工大学)

    Li H 2021 Ph. D. Dissertation (DaLian: Dalian University of Technology

  • [1] 胡莹欣, 赵开君, 李继全, 严龙文, 许健强, 黄治辉, 余德良, 谢耀禹, 丁肖冠, 温思宇. HL-2A托卡马克电子回旋共振加热调制对湍流驱动和传播的影响.  , doi: 10.7498/aps.74.20241263
    [2] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响.  , doi: 10.7498/aps.73.20240730
    [3] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动.  , doi: 10.7498/aps.72.20231077
    [4] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , doi: 10.7498/aps.72.20222043
    [5] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究.  , doi: 10.7498/aps.72.20230620
    [6] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟.  , doi: 10.7498/aps.72.20230991
    [7] 罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组. HL-2A上NBI加热H模实验的集成模拟分析.  , doi: 10.7498/aps.71.20211941
    [8] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , doi: 10.7498/aps.70.20202003
    [9] 郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETRTEAM. 中国聚变工程试验堆上新经典撕裂模和纵场波纹扰动叠加效应对alpha粒子损失影响的数值模拟.  , doi: 10.7498/aps.70.20201972
    [10] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用.  , doi: 10.7498/aps.63.125204
    [11] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究.  , doi: 10.7498/aps.63.035204
    [12] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究.  , doi: 10.7498/aps.62.245206
    [13] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响.  , doi: 10.7498/aps.61.075202
    [14] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究.  , doi: 10.7498/aps.61.115207
    [15] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , doi: 10.7498/aps.59.5596
    [16] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究.  , doi: 10.7498/aps.58.8448
    [17] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动.  , doi: 10.7498/aps.55.1307
    [18] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运.  , doi: 10.7498/aps.52.1970
    [19] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究.  , doi: 10.7498/aps.50.1956
    [20] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析.  , doi: 10.7498/aps.49.2394
计量
  • 文章访问数:  315
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-18
  • 修回日期:  2025-02-24
  • 上网日期:  2025-03-07

/

返回文章
返回
Baidu
map