Processing math: 100%

搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HL-2A上H模脱靶与芯部约束兼容性的集成模拟与实验验证

舒宇坤 王占辉 徐欣亮 吴雪科 王卓 吴婷 周雨林 付彩龙 钟翊君 余鑫 李永高 何小雪 杨曾辰 昆仑集成模拟设计组

HL-2A上H模脱靶与芯部约束兼容性的集成模拟与实验验证

舒宇坤, 王占辉, 徐欣亮, 吴雪科, 王卓, 吴婷, 周雨林, 付彩龙, 钟翊君, 余鑫, 李永高, 何小雪, 杨曾辰, 昆仑集成模拟设计组

Integrated modeling and experimental validation of H-mode divertor detachment and core confinement compatibility on HL-2A tokamak

SHU Yukun, WANG Zhanhui, XU Xinliang, WU Xueke, WANG Zhuo, WU Ting, ZHOU Yulin, FU Cailong, ZHONG Yijun, YU Xin, LI Yonggao, HE Xiaoxue, YANG Zengchen, Kunlun Integrated Simulation and Design Group
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 托卡马克高约束H模条件下偏滤器脱靶和热流控制是当前磁约束核聚变研究中的关键物理问题。脱靶对H模边界输运物理尤其是对芯部约束兼容性的影响是研究偏滤器脱靶物理的关键问题。本文获得了HL-2A装置H模等离子体偏滤器脱靶与芯部约束兼容的实验结果,采用OMFIT集成模拟平台,新发展了偏滤器靶板区的神经网络快速集成模拟方法,率先采用该快速集成模拟方法开展HL-2A第39007炮高约束模式下,边界偏滤器脱靶与芯部约束兼容性的集成模拟研究,经验证集成模拟结果与实验结果相吻合。通过进一步分析发现: HL-2A装置H模脱靶情况下,在芯部0.1 <ρ≤ 0.5的区域内高极向波数(kθρs>1)模式下的湍性输运以离子温度梯度ITG模主导,在芯部0.5 <ρ≤ 0.7的区域内的湍性输运以电子湍流主导;而边界则是在归一化极向波数 kθρs<2 的情况下由电子湍流主导,kθρs>2 的情况下则以ITG为主,并伴有少量的电子湍流。本文研究结果为托卡马克装置芯边耦合物理研究提供了一定的集成模拟与实验验证基础。
    The divertor detachment and heat flux control under high-confinement H-mode conditions in tokamaks represent critical physical challenges in current magnetic confinement fusion research. Understanding the impact of detachment on H-mode boundary transport physics, particularly its compatibility with core confinement, is central to resolving divertor detachment physics. In this study, experimental results on divertor detachment and core confinement compatibility in H-mode plasmas from the HL-2A tokamak are presented. On the OMFIT (Objective MHD Framework For Integrated Tasks) integrated modeling platform, a novel neural network-based fast integrated modeling method for the divertor target region has been developed, by integrating a new edge neural network module (Kun-Lun Neural Networks, KLNN) to enhance divertor, scrape-off-layer and edge pedestal fast prediction capability. For the first time, this method is applied to conduct integrated simulations of divertor detachment and core confinement compatibility in HL-2A discharge #39007 in highconfinement mode. The simulation results are validated against experimental measurements, which are consistent well with each other. Further analysis reveals that in HL-2A H-mode detachment scenarios: turbulent transport in the core region ( 0.1 <ρ≤ 0.5) with high poloidal wave numbers ((kθρs>1) is dominated by ion temperature gradient (ITG) modes, while electron-driven turbulence prevails in the region (0.5 <ρ≤ 0.7). In the boundary region, electron turbulence dominates at low normalized poloidal wave numbers (kθρs<2), whereas ITG modes become predominant at higher wave numbers (kθρs>2), accompanied by minor electron turbulence contributions. The research results of this paper provide a certain foundation for integrated simulation and experimental verification in the study of core-edge coupling physics in tokamak devices and some insights for understanding of detachment-compatible H-mode scenarios in next-step fusion devices.
      PACS:
  • [1]

    Sun Y W, Qiu Z Y, Wan B N, 2024Acta Phys. Sin. 73(17) 175202

    [2]

    K Ida, T Fujita, 2018Plasma Phys. Control. Fusion 60 033001

    [3]

    A W Leonard, 2018Plasma Phys. Control. Fusion 60 044001

    [4]

    L Wang, L Wang, H Q Wang, D Eldon, Q P Yuan, S Ding, K D Li, A M Garofalo, X Z Gong, G S Xu, H Y Guo, K Wu, L Y Meng, J C Xu, J B Liu, M W Chen, B Zhang, Y M Duan, F Ding, Z S Yang, J P Qian, J Huang, Q L Ren, A W Leonard, M Fenstermacher, C Lasnier, J G Watkins, M W Shafer, J Barr, D Weisberg, J McClenaghan, J Hanson, A Hyatt, T Osborne, D Thomas, D Humphreys, R J Buttery, G-N Luo, B J Xiao, B N Wan, J G Li, 2021Nature Communications 12 1365

    [5]

    Meng L Y, 2022Ph.D. Dissertation (He Fei: University of Science and Technology of China)

    [6]

    Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W C, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M, 2023Plasma Sci. Technol. 25 015102

    [7]

    Qin C C, Mou M L, Chen S Y, 2023Acta Phys. Sin. 72(4) 045203

    [8]

    Long T, Ke R, Wu T, Gao J M, Cai Z, Wang Z H, Xu M, 2024Acta Phys. Sin. 73(8) 088901

    [9]

    T C Luce, C D Challis, S Ide, E Joffrin, Y Kamada, P A Politzer, J Schweinzer, A C C Sips, J Stober, G Giruzzi, C E Kessel, M Murakami, Y-S Na, J M Park, A R Polevoi, R V Budny, J Citrin, J Garcia, N Hayashi, J Hobirk, B F Hudson, F Imbeaux, A Isayama, D C McDonald, T Nakano, N Oyama, V V Parail, T W Petrie, C C Petty, T Suzuki, M R Wade, the ITPA Integrated Operation Scenario Topical Group Members, the ASDEX-Upgrade Team, the DIII-D Team, JET EFDA Contributors and the JT-60U Team, 2014Nucl. Fusion 54 013015

    [10]

    F Imbeaux, S D Pinches, J B Lister, Y Buravand, T Casper, B Duval, B Guillerminet, M Hosokawa, W Houlberg, P Huynh, S H Kim, G Manduchi, M Owsiak, B Palak, M Plociennik, G Rouault, O Sauter, P Strand, 2015Nucl. Fusion 55 123006

    [11]

    O Meneghini, S P Smith, L L Lao, O Izacard, Q Ren, J M Park, J Candy, Z Wang, C J Luna, V A Izzo, B A Grierson, P B Snyder, C Holland, J Penna, G Lu, P Raum, A McCubbin, D M Orlov, E A Belli, N M Ferraro, R Prater, T H Osborne, A D Turnbull, G M Staebler, the ATOM Team, 2015Nucl. Fusion 55 083008

    [12]

    Zeng J X, Song Y T, Huang X Y, 2013 Plasma Sci. Technol. 15(2) 152

    [13]

    Luo Y M, Wang Z H, Chen J L, 2022Acta Phys. Sin. 71(7) 075201

    [14]

    Luo Y M, 2022Master's Dissertation (ChenDu: Southwestern Institute of Physics) (in Chinese) [罗一鸣2022硕士学位论文(成都: 核工业西南物理研究院)]

    [15]

    John H S, Taylor T S, Lin-Liu Y R, Turnbull A D, 1994Plasma Phys. Controlled Fusion 3 603

    [16]

    Lao L L, John H S, Stambaugh R D, Kellman A G, Pfeiffer W, 1985Nucl. Fusion 25 1421

    [17]

    Pan C, Staebler G M, Lao L L, Garofalo A M, Gong X, Ren Q, Smith S P, 2017Nucl. Fusion 57036018

    [18]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A, 2004Computer Physics Communications 159157

    [19]

    C Yang, P T Bonoli, J C Wright, B J Ding, R Parker, S Shiraiwa, M H Li, 2014Plasma Phys. Control. Fusion 56 125003

    [20]

    Fan H, Chen S Y, Mou M L, Liu T Q, Zhang Y M, Tang C J, 2024Acta Phys. Sin. 73(9) 095204

    [21]

    Kritz A H, Hsuan H, Goldfinger R C, 1982Heating in Toroidal Plasmas 83 008980

    [22]

    M N A Beurskens, T H Osborne, P A Schneider, E Wolfrum, L Frassinetti, R Groebner, P Lomas, I Nunes, S Saarelma, R Scannell, P B Snyder, D Zarzoso, I Balboa, B Bray, M Brix, J Flanagan, C Giroud, E Giovannozzi, M Kempenaars, A Loarte, E de la Luna, G Maddison, C F Maggi, D McDonald, R Pasqualotto, G Saibene, R Sartori, Emilia R Solano, M Walsh, L Zabeo, The DIII-D Team, The ASDEX Upgrade Team, JET-EFDA Contributors, 2011Phys. Plasmas 18 056120

    [23]

    M. Moscheni, M Wigram, H Wu, C Meineri, C Carati, E De Marchi, M Greenwald, P Innocente, B LaBombard, F Subba, R Zanino, 2025Nucl. Fusion 65 026025

    [24]

    C Cowley, A Q Kuang, D Moulton, J D Lore, J Canik, M Umansky, M Wigram, S Ballinger, B Lipschultz, X Bonnin, 2023Plasma Phys. Control. Fusion 65 035011

    [25]

    Liang J H, Liu S F, Wang H P 2022 Nuclear Fusion and Plasma Physics 42(S1) 164

    [26]

    Liu Z J 2022Ph.D. Dissertation (HeFei: University of Science and Technology of China) (in Chinese) [刘自结2022博士学位论文(合肥: 中国科学技术大学)]

    [27]

    Wang J X 2022Ph.D. Dissertation (HeFei: University of Science and Technology of China) (in Chinese) [汪金鑫2022博士学位论文(合肥: 中国科学技术大学)]

    [28]

    Zhu X B, Xia F, Yang Z, 2024Nuclear Fusion and Plasma Physics 44(02) 149

    [29]

    J E Kinsey, G M Staebler, J Candy, R E Waltz, R V Budny, 2011Nucl. Fusion 51(8) 083001

    [30]

    G M Staebler, J Candy, R E Waltz, J E Kinsey, W M Solomon, 2013Phys. Rev. Lett. 110 055003

    [31]

    Waltz R E, Staebler G M, Dorland W, Hammett G W, Kotschenreuther M, Konings J A, 1997Phys. Plasmas 4(7) 2482

    [32]

    H S Bosch, G M Hale, 1992 Nucl. Fusion 32(4) 611

    [33]

    M Marin, Y Camenen, C Bourdelle, F J Casson, R Coosemans, L Garzott, the TCV Team, 2025Nucl. Fusion 65 036015

    [34]

    E A Belli, J Candy, 2012Plasma Phys. Control. Fusion 54 015015

    [35]

    Perin M, Chandre C, Tassi E, 2016J. Phys. A: Math. Theor. 49305501

    [36]

    Dudkovskaia A V, Connor J W, Dickinson D, Hill P, Imada K, Leigh S, Wilson H R, 2023Nucl. Fusion 63 126040

    [37]

    Kates-Harbeck J, Svyatkovskiy A, Tang W, 2019Nature 568 526

    [38]

    W M Tang, G Rewoldt, 1993Physics of Fluids B: Plasma Physics 5(7) 2451

    [39]

    W M Tang, G Rewoldt, 1978Nucl. Fusion 18 1089

    [40]

    Li H, 2021Ph.D. Dissertation (DaLian: Dalian University of Technology) (in Chinese) [李慧2021博士学位论文(大连: 大连理工大学)]

  • [1] 胡莹欣, 赵开君, 李继全, 严龙文, 许健强, 黄治辉, 余德良, 谢耀禹, 丁肖冠, 温思宇. HL-2A托卡马克电子回旋共振加热调制对湍流驱动和传播的影响.  , doi: 10.7498/aps.74.20241263
    [2] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响.  , doi: 10.7498/aps.73.20240730
    [3] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动.  , doi: 10.7498/aps.72.20231077
    [4] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , doi: 10.7498/aps.72.20222043
    [5] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究.  , doi: 10.7498/aps.72.20230620
    [6] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟.  , doi: 10.7498/aps.72.20230991
    [7] 罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组. HL-2A上NBI加热H模实验的集成模拟分析.  , doi: 10.7498/aps.71.20211941
    [8] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , doi: 10.7498/aps.70.20202003
    [9] 郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETRTEAM. 中国聚变工程试验堆上新经典撕裂模和纵场波纹扰动叠加效应对alpha粒子损失影响的数值模拟.  , doi: 10.7498/aps.70.20201972
    [10] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用.  , doi: 10.7498/aps.63.125204
    [11] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究.  , doi: 10.7498/aps.63.035204
    [12] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究.  , doi: 10.7498/aps.62.245206
    [13] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响.  , doi: 10.7498/aps.61.075202
    [14] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究.  , doi: 10.7498/aps.61.115207
    [15] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , doi: 10.7498/aps.59.5596
    [16] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究.  , doi: 10.7498/aps.58.8448
    [17] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动.  , doi: 10.7498/aps.55.1307
    [18] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运.  , doi: 10.7498/aps.52.1970
    [19] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究.  , doi: 10.7498/aps.50.1956
    [20] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析.  , doi: 10.7498/aps.49.2394
计量
  • 文章访问数:  98
  • PDF下载量:  3
出版历程
  • 上网日期:  2025-03-07

/

返回文章
返回
Baidu
map