-
托卡马克高约束H模条件下偏滤器脱靶和热流控制是当前磁约束核聚变研究中的关键物理问题。脱靶对H模边界输运物理尤其是对芯部约束兼容性的影响是研究偏滤器脱靶物理的关键问题。本文获得了HL-2A装置H模等离子体偏滤器脱靶与芯部约束兼容的实验结果,采用OMFIT集成模拟平台,新发展了偏滤器靶板区的神经网络快速集成模拟方法,率先采用该快速集成模拟方法开展HL-2A第39007炮高约束模式下,边界偏滤器脱靶与芯部约束兼容性的集成模拟研究,经验证集成模拟结果与实验结果相吻合。通过进一步分析发现: HL-2A装置H模脱靶情况下,在芯部0.1 <ρ≤ 0.5的区域内高极向波数(kθρs>1)模式下的湍性输运以离子温度梯度ITG模主导,在芯部0.5 <ρ≤ 0.7的区域内的湍性输运以电子湍流主导;而边界则是在归一化极向波数 kθρs<2 的情况下由电子湍流主导,kθρs>2 的情况下则以ITG为主,并伴有少量的电子湍流。本文研究结果为托卡马克装置芯边耦合物理研究提供了一定的集成模拟与实验验证基础。The divertor detachment and heat flux control under high-confinement H-mode conditions in tokamaks represent critical physical challenges in current magnetic confinement fusion research. Understanding the impact of detachment on H-mode boundary transport physics, particularly its compatibility with core confinement, is central to resolving divertor detachment physics. In this study, experimental results on divertor detachment and core confinement compatibility in H-mode plasmas from the HL-2A tokamak are presented. On the OMFIT (Objective MHD Framework For Integrated Tasks) integrated modeling platform, a novel neural network-based fast integrated modeling method for the divertor target region has been developed, by integrating a new edge neural network module (Kun-Lun Neural Networks, KLNN) to enhance divertor, scrape-off-layer and edge pedestal fast prediction capability. For the first time, this method is applied to conduct integrated simulations of divertor detachment and core confinement compatibility in HL-2A discharge #39007 in highconfinement mode. The simulation results are validated against experimental measurements, which are consistent well with each other. Further analysis reveals that in HL-2A H-mode detachment scenarios: turbulent transport in the core region ( 0.1 <ρ≤ 0.5) with high poloidal wave numbers ((kθρs>1) is dominated by ion temperature gradient (ITG) modes, while electron-driven turbulence prevails in the region (0.5 <ρ≤ 0.7). In the boundary region, electron turbulence dominates at low normalized poloidal wave numbers (kθρs<2), whereas ITG modes become predominant at higher wave numbers (kθρs>2), accompanied by minor electron turbulence contributions. The research results of this paper provide a certain foundation for integrated simulation and experimental verification in the study of core-edge coupling physics in tokamak devices and some insights for understanding of detachment-compatible H-mode scenarios in next-step fusion devices.
-
Keywords:
- tokamak /
- detachment /
- H mode /
- integrated simulation
-
[1] Sun Y W, Qiu Z Y, Wan B N, 2024Acta Phys. Sin. 73(17) 175202
[2] K Ida, T Fujita, 2018Plasma Phys. Control. Fusion 60 033001
[3] A W Leonard, 2018Plasma Phys. Control. Fusion 60 044001
[4] L Wang, L Wang, H Q Wang, D Eldon, Q P Yuan, S Ding, K D Li, A M Garofalo, X Z Gong, G S Xu, H Y Guo, K Wu, L Y Meng, J C Xu, J B Liu, M W Chen, B Zhang, Y M Duan, F Ding, Z S Yang, J P Qian, J Huang, Q L Ren, A W Leonard, M Fenstermacher, C Lasnier, J G Watkins, M W Shafer, J Barr, D Weisberg, J McClenaghan, J Hanson, A Hyatt, T Osborne, D Thomas, D Humphreys, R J Buttery, G-N Luo, B J Xiao, B N Wan, J G Li, 2021Nature Communications 12 1365
[5] Meng L Y, 2022Ph.D. Dissertation (He Fei: University of Science and Technology of China)
[6] Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W C, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M, 2023Plasma Sci. Technol. 25 015102
[7] Qin C C, Mou M L, Chen S Y, 2023Acta Phys. Sin. 72(4) 045203
[8] Long T, Ke R, Wu T, Gao J M, Cai Z, Wang Z H, Xu M, 2024Acta Phys. Sin. 73(8) 088901
[9] T C Luce, C D Challis, S Ide, E Joffrin, Y Kamada, P A Politzer, J Schweinzer, A C C Sips, J Stober, G Giruzzi, C E Kessel, M Murakami, Y-S Na, J M Park, A R Polevoi, R V Budny, J Citrin, J Garcia, N Hayashi, J Hobirk, B F Hudson, F Imbeaux, A Isayama, D C McDonald, T Nakano, N Oyama, V V Parail, T W Petrie, C C Petty, T Suzuki, M R Wade, the ITPA Integrated Operation Scenario Topical Group Members, the ASDEX-Upgrade Team, the DIII-D Team, JET EFDA Contributors and the JT-60U Team, 2014Nucl. Fusion 54 013015
[10] F Imbeaux, S D Pinches, J B Lister, Y Buravand, T Casper, B Duval, B Guillerminet, M Hosokawa, W Houlberg, P Huynh, S H Kim, G Manduchi, M Owsiak, B Palak, M Plociennik, G Rouault, O Sauter, P Strand, 2015Nucl. Fusion 55 123006
[11] O Meneghini, S P Smith, L L Lao, O Izacard, Q Ren, J M Park, J Candy, Z Wang, C J Luna, V A Izzo, B A Grierson, P B Snyder, C Holland, J Penna, G Lu, P Raum, A McCubbin, D M Orlov, E A Belli, N M Ferraro, R Prater, T H Osborne, A D Turnbull, G M Staebler, the ATOM Team, 2015Nucl. Fusion 55 083008
[12] Zeng J X, Song Y T, Huang X Y, 2013 Plasma Sci. Technol. 15(2) 152
[13] Luo Y M, Wang Z H, Chen J L, 2022Acta Phys. Sin. 71(7) 075201
[14] Luo Y M, 2022Master's Dissertation (ChenDu: Southwestern Institute of Physics) (in Chinese) [罗一鸣2022硕士学位论文(成都: 核工业西南物理研究院)]
[15] John H S, Taylor T S, Lin-Liu Y R, Turnbull A D, 1994Plasma Phys. Controlled Fusion 3 603
[16] Lao L L, John H S, Stambaugh R D, Kellman A G, Pfeiffer W, 1985Nucl. Fusion 25 1421
[17] Pan C, Staebler G M, Lao L L, Garofalo A M, Gong X, Ren Q, Smith S P, 2017Nucl. Fusion 57036018
[18] Pankin A, McCune D, Andre R, Bateman G, Kritz A, 2004Computer Physics Communications 159157
[19] C Yang, P T Bonoli, J C Wright, B J Ding, R Parker, S Shiraiwa, M H Li, 2014Plasma Phys. Control. Fusion 56 125003
[20] Fan H, Chen S Y, Mou M L, Liu T Q, Zhang Y M, Tang C J, 2024Acta Phys. Sin. 73(9) 095204
[21] Kritz A H, Hsuan H, Goldfinger R C, 1982Heating in Toroidal Plasmas 83 008980
[22] M N A Beurskens, T H Osborne, P A Schneider, E Wolfrum, L Frassinetti, R Groebner, P Lomas, I Nunes, S Saarelma, R Scannell, P B Snyder, D Zarzoso, I Balboa, B Bray, M Brix, J Flanagan, C Giroud, E Giovannozzi, M Kempenaars, A Loarte, E de la Luna, G Maddison, C F Maggi, D McDonald, R Pasqualotto, G Saibene, R Sartori, Emilia R Solano, M Walsh, L Zabeo, The DIII-D Team, The ASDEX Upgrade Team, JET-EFDA Contributors, 2011Phys. Plasmas 18 056120
[23] M. Moscheni, M Wigram, H Wu, C Meineri, C Carati, E De Marchi, M Greenwald, P Innocente, B LaBombard, F Subba, R Zanino, 2025Nucl. Fusion 65 026025
[24] C Cowley, A Q Kuang, D Moulton, J D Lore, J Canik, M Umansky, M Wigram, S Ballinger, B Lipschultz, X Bonnin, 2023Plasma Phys. Control. Fusion 65 035011
[25] Liang J H, Liu S F, Wang H P 2022 Nuclear Fusion and Plasma Physics 42(S1) 164
[26] Liu Z J 2022Ph.D. Dissertation (HeFei: University of Science and Technology of China) (in Chinese) [刘自结2022博士学位论文(合肥: 中国科学技术大学)]
[27] Wang J X 2022Ph.D. Dissertation (HeFei: University of Science and Technology of China) (in Chinese) [汪金鑫2022博士学位论文(合肥: 中国科学技术大学)]
[28] Zhu X B, Xia F, Yang Z, 2024Nuclear Fusion and Plasma Physics 44(02) 149
[29] J E Kinsey, G M Staebler, J Candy, R E Waltz, R V Budny, 2011Nucl. Fusion 51(8) 083001
[30] G M Staebler, J Candy, R E Waltz, J E Kinsey, W M Solomon, 2013Phys. Rev. Lett. 110 055003
[31] Waltz R E, Staebler G M, Dorland W, Hammett G W, Kotschenreuther M, Konings J A, 1997Phys. Plasmas 4(7) 2482
[32] H S Bosch, G M Hale, 1992 Nucl. Fusion 32(4) 611
[33] M Marin, Y Camenen, C Bourdelle, F J Casson, R Coosemans, L Garzott, the TCV Team, 2025Nucl. Fusion 65 036015
[34] E A Belli, J Candy, 2012Plasma Phys. Control. Fusion 54 015015
[35] Perin M, Chandre C, Tassi E, 2016J. Phys. A: Math. Theor. 49305501
[36] Dudkovskaia A V, Connor J W, Dickinson D, Hill P, Imada K, Leigh S, Wilson H R, 2023Nucl. Fusion 63 126040
[37] Kates-Harbeck J, Svyatkovskiy A, Tang W, 2019Nature 568 526
[38] W M Tang, G Rewoldt, 1993Physics of Fluids B: Plasma Physics 5(7) 2451
[39] W M Tang, G Rewoldt, 1978Nucl. Fusion 18 1089
[40] Li H, 2021Ph.D. Dissertation (DaLian: Dalian University of Technology) (in Chinese) [李慧2021博士学位论文(大连: 大连理工大学)]
计量
- 文章访问数: 98
- PDF下载量: 3