-
The propagation properties of electromagnetic waves excited by helicon antenna with a parabolic radial electron density distribution in an external magnetic field were studied. Maxwell equations are numerically solved using the linear disturbance wave assumption to obtain energy distribution, when the magnetic intensity changes from 80 to 800 G. The radial electromagnetic wave and energy deposition intensity distributions were obtained. Results show that when magnetic intensity grows, the helicon wave is little damped and it can propagate into the bulk plasma; Trivelpiece-Gould (TG) wave is heavily damped at plasma-vacuum interface; the main energy absorption region moves towards the boundary gradually. When the magnetic intensity is lower than 100 G, the TG wave can propagate into the bulk plasma, and the plasma radial energy distribution is relatively uniform.
-
Keywords:
- helicon wave /
- plasma /
- magnetic field /
- numerical simulation
[1] Han K, Jiang B H, Ji Y C 2012 Acta Phys. Sin. 61 075209 (in Chinese) [韩轲, 江滨浩, 纪延超 2012 61 075209]
[2] Geng S F, Tang D L, Qiu X M 2012 Acta Phys. Sin. 61 075210 (in Chinese) [耿少飞, 唐德礼, 邱孝明 2012 61 075210]
[3] Zhang R, Zhang D X, Zhang F, He Z, Wu J J 2013 Acta Phys. Sin. 62 025207 (in Chinese) [张锐, 张代贤, 张帆, 何振, 吴建军 2013 62 025207]
[4] Bering E A, Brukardt M 2006 AIAA Aerospace Science Meeting and Exhibit 766
[5] Feldman M S, Choueiri E Y 2011 Internation Electric Propulsion Conference 220
[6] Toki K, Shinohara S, Tanikawa T, Shamrai K P 2006 Thin Solid Films 506–507 597
[7] Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095
[8] Boswell R W 1984 Plasma Phys. Contr. Fusion 26 1147
[9] Chen F F 1991 Plasma Phys. Contr. Fusion 33 339
[10] Shamrai K P, Taranov V B 1994 Plasma Phys. Contr. Fusion 36 1719
[11] Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474
[12] Arnush D 2000 Phys. Plasmas 7 3042
[13] Arnush D, Chen F F 1998 Phys. Plasmas 5 1239
[14] Curreli D, Chen F F 2011 Phys. Plasmas 18 113501
[15] Gnoffo P A, Gupta R N, Judy L. shinn 1989 NASA Technical Paper
[16] Vahedi V, Surendra M 1995 Com. Phys. Comm. 87 179
[17] Michael D W, Christine C, Boswell R W 2009 J. Phys. D: Appl. Phys. 42 245201
[18] Windisch T, Rahbarnia K, Grulke O, Klinger T 2010 Plasma Sources Sci. Technol. 19 055002
[19] Nakamuara K, Suzuki K, Sugai H 1995 J. Appl. Phys. 34 2152
[20] Blackwell D D, Madziwa T G, Arnush D, Chen F F 2002 Phys. Rev. Lett. 88 145002
[21] Chen F F, Curreli D 2013 Phys. Plasmas 20 057102
-
[1] Han K, Jiang B H, Ji Y C 2012 Acta Phys. Sin. 61 075209 (in Chinese) [韩轲, 江滨浩, 纪延超 2012 61 075209]
[2] Geng S F, Tang D L, Qiu X M 2012 Acta Phys. Sin. 61 075210 (in Chinese) [耿少飞, 唐德礼, 邱孝明 2012 61 075210]
[3] Zhang R, Zhang D X, Zhang F, He Z, Wu J J 2013 Acta Phys. Sin. 62 025207 (in Chinese) [张锐, 张代贤, 张帆, 何振, 吴建军 2013 62 025207]
[4] Bering E A, Brukardt M 2006 AIAA Aerospace Science Meeting and Exhibit 766
[5] Feldman M S, Choueiri E Y 2011 Internation Electric Propulsion Conference 220
[6] Toki K, Shinohara S, Tanikawa T, Shamrai K P 2006 Thin Solid Films 506–507 597
[7] Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095
[8] Boswell R W 1984 Plasma Phys. Contr. Fusion 26 1147
[9] Chen F F 1991 Plasma Phys. Contr. Fusion 33 339
[10] Shamrai K P, Taranov V B 1994 Plasma Phys. Contr. Fusion 36 1719
[11] Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474
[12] Arnush D 2000 Phys. Plasmas 7 3042
[13] Arnush D, Chen F F 1998 Phys. Plasmas 5 1239
[14] Curreli D, Chen F F 2011 Phys. Plasmas 18 113501
[15] Gnoffo P A, Gupta R N, Judy L. shinn 1989 NASA Technical Paper
[16] Vahedi V, Surendra M 1995 Com. Phys. Comm. 87 179
[17] Michael D W, Christine C, Boswell R W 2009 J. Phys. D: Appl. Phys. 42 245201
[18] Windisch T, Rahbarnia K, Grulke O, Klinger T 2010 Plasma Sources Sci. Technol. 19 055002
[19] Nakamuara K, Suzuki K, Sugai H 1995 J. Appl. Phys. 34 2152
[20] Blackwell D D, Madziwa T G, Arnush D, Chen F F 2002 Phys. Rev. Lett. 88 145002
[21] Chen F F, Curreli D 2013 Phys. Plasmas 20 057102
Catalog
Metrics
- Abstract views: 8117
- PDF Downloads: 660
- Cited By: 0