Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Integrated modeling and experimental validation of H-mode divertor detachment and core confinement compatibility on HL-2A tokamak

SHU Yukun WANG Zhanhui XU Xinliang WU Xueke WANG Zhuo WU Ting ZHOU Yulin FU Cailong ZHONG Yijun YU Xin LI Yonggao HE Xiaoxue YANG Zengchen Kunlun Integrated Simulation and Design Group

Citation:

Integrated modeling and experimental validation of H-mode divertor detachment and core confinement compatibility on HL-2A tokamak

SHU Yukun, WANG Zhanhui, XU Xinliang, WU Xueke, WANG Zhuo, WU Ting, ZHOU Yulin, FU Cailong, ZHONG Yijun, YU Xin, LI Yonggao, HE Xiaoxue, YANG Zengchen, Kunlun Integrated Simulation and Design Group
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The divertor detachment and heat flux control under high-confinement H-mode conditions in tokamaks represent critical physical challenges in current magnetic confinement fusion research. Understanding the impact of detachment on H-mode boundary transport physics, particularly its compatibility with core confinement, is central to resolving divertor detachment physics. In this study, experimental results on divertor detachment and core confinement compatibility in H-mode plasmas from the HL-2A tokamak are presented. On the OMFIT (Objective MHD Framework For Integrated Tasks) integrated modeling platform, a novel neural network-based fast integrated modeling method for the divertor target region has been developed, by integrating a new edge neural network module (Kun-Lun Neural Networks, KLNN) to enhance divertor, scrape-off-layer and edge pedestal fast prediction capability. For the first time, this method is applied to conduct integrated simulations of divertor detachment and core confinement compatibility in HL-2A discharge #39007 in highconfinement mode. The simulation results are validated against experimental measurements, which are consistent well with each other. Further analysis reveals that in HL-2A H-mode detachment scenarios: turbulent transport in the core region ( 0.1 <ρ≤ 0.5) with high poloidal wave numbers (($k_\theta \rho_s>1$) is dominated by ion temperature gradient (ITG) modes, while electron-driven turbulence prevails in the region (0.5 <ρ≤ 0.7). In the boundary region, electron turbulence dominates at low normalized poloidal wave numbers ($k_\theta \rho_s<2$), whereas ITG modes become predominant at higher wave numbers ($k_\theta \rho_s>2$), accompanied by minor electron turbulence contributions. The research results of this paper provide a certain foundation for integrated simulation and experimental verification in the study of core-edge coupling physics in tokamak devices and some insights for understanding of detachment-compatible H-mode scenarios in next-step fusion devices.
  • [1]

    Sun Y W, Qiu Z Y, Wan B N, 2024Acta Phys. Sin. 73(17) 175202

    [2]

    K Ida, T Fujita, 2018Plasma Phys. Control. Fusion 60 033001

    [3]

    A W Leonard, 2018Plasma Phys. Control. Fusion 60 044001

    [4]

    L Wang, L Wang, H Q Wang, D Eldon, Q P Yuan, S Ding, K D Li, A M Garofalo, X Z Gong, G S Xu, H Y Guo, K Wu, L Y Meng, J C Xu, J B Liu, M W Chen, B Zhang, Y M Duan, F Ding, Z S Yang, J P Qian, J Huang, Q L Ren, A W Leonard, M Fenstermacher, C Lasnier, J G Watkins, M W Shafer, J Barr, D Weisberg, J McClenaghan, J Hanson, A Hyatt, T Osborne, D Thomas, D Humphreys, R J Buttery, G-N Luo, B J Xiao, B N Wan, J G Li, 2021Nature Communications 12 1365

    [5]

    Meng L Y, 2022Ph.D. Dissertation (He Fei: University of Science and Technology of China)

    [6]

    Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W C, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M, 2023Plasma Sci. Technol. 25 015102

    [7]

    Qin C C, Mou M L, Chen S Y, 2023Acta Phys. Sin. 72(4) 045203

    [8]

    Long T, Ke R, Wu T, Gao J M, Cai Z, Wang Z H, Xu M, 2024Acta Phys. Sin. 73(8) 088901

    [9]

    T C Luce, C D Challis, S Ide, E Joffrin, Y Kamada, P A Politzer, J Schweinzer, A C C Sips, J Stober, G Giruzzi, C E Kessel, M Murakami, Y-S Na, J M Park, A R Polevoi, R V Budny, J Citrin, J Garcia, N Hayashi, J Hobirk, B F Hudson, F Imbeaux, A Isayama, D C McDonald, T Nakano, N Oyama, V V Parail, T W Petrie, C C Petty, T Suzuki, M R Wade, the ITPA Integrated Operation Scenario Topical Group Members, the ASDEX-Upgrade Team, the DIII-D Team, JET EFDA Contributors and the JT-60U Team, 2014Nucl. Fusion 54 013015

    [10]

    F Imbeaux, S D Pinches, J B Lister, Y Buravand, T Casper, B Duval, B Guillerminet, M Hosokawa, W Houlberg, P Huynh, S H Kim, G Manduchi, M Owsiak, B Palak, M Plociennik, G Rouault, O Sauter, P Strand, 2015Nucl. Fusion 55 123006

    [11]

    O Meneghini, S P Smith, L L Lao, O Izacard, Q Ren, J M Park, J Candy, Z Wang, C J Luna, V A Izzo, B A Grierson, P B Snyder, C Holland, J Penna, G Lu, P Raum, A McCubbin, D M Orlov, E A Belli, N M Ferraro, R Prater, T H Osborne, A D Turnbull, G M Staebler, the ATOM Team, 2015Nucl. Fusion 55 083008

    [12]

    Zeng J X, Song Y T, Huang X Y, 2013 Plasma Sci. Technol. 15(2) 152

    [13]

    Luo Y M, Wang Z H, Chen J L, 2022Acta Phys. Sin. 71(7) 075201

    [14]

    Luo Y M, 2022Master's Dissertation (ChenDu: Southwestern Institute of Physics) (in Chinese) [罗一鸣2022硕士学位论文(成都: 核工业西南物理研究院)]

    [15]

    John H S, Taylor T S, Lin-Liu Y R, Turnbull A D, 1994Plasma Phys. Controlled Fusion 3 603

    [16]

    Lao L L, John H S, Stambaugh R D, Kellman A G, Pfeiffer W, 1985Nucl. Fusion 25 1421

    [17]

    Pan C, Staebler G M, Lao L L, Garofalo A M, Gong X, Ren Q, Smith S P, 2017Nucl. Fusion 57036018

    [18]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A, 2004Computer Physics Communications 159157

    [19]

    C Yang, P T Bonoli, J C Wright, B J Ding, R Parker, S Shiraiwa, M H Li, 2014Plasma Phys. Control. Fusion 56 125003

    [20]

    Fan H, Chen S Y, Mou M L, Liu T Q, Zhang Y M, Tang C J, 2024Acta Phys. Sin. 73(9) 095204

    [21]

    Kritz A H, Hsuan H, Goldfinger R C, 1982Heating in Toroidal Plasmas 83 008980

    [22]

    M N A Beurskens, T H Osborne, P A Schneider, E Wolfrum, L Frassinetti, R Groebner, P Lomas, I Nunes, S Saarelma, R Scannell, P B Snyder, D Zarzoso, I Balboa, B Bray, M Brix, J Flanagan, C Giroud, E Giovannozzi, M Kempenaars, A Loarte, E de la Luna, G Maddison, C F Maggi, D McDonald, R Pasqualotto, G Saibene, R Sartori, Emilia R Solano, M Walsh, L Zabeo, The DIII-D Team, The ASDEX Upgrade Team, JET-EFDA Contributors, 2011Phys. Plasmas 18 056120

    [23]

    M. Moscheni, M Wigram, H Wu, C Meineri, C Carati, E De Marchi, M Greenwald, P Innocente, B LaBombard, F Subba, R Zanino, 2025Nucl. Fusion 65 026025

    [24]

    C Cowley, A Q Kuang, D Moulton, J D Lore, J Canik, M Umansky, M Wigram, S Ballinger, B Lipschultz, X Bonnin, 2023Plasma Phys. Control. Fusion 65 035011

    [25]

    Liang J H, Liu S F, Wang H P 2022 Nuclear Fusion and Plasma Physics 42(S1) 164

    [26]

    Liu Z J 2022Ph.D. Dissertation (HeFei: University of Science and Technology of China) (in Chinese) [刘自结2022博士学位论文(合肥: 中国科学技术大学)]

    [27]

    Wang J X 2022Ph.D. Dissertation (HeFei: University of Science and Technology of China) (in Chinese) [汪金鑫2022博士学位论文(合肥: 中国科学技术大学)]

    [28]

    Zhu X B, Xia F, Yang Z, 2024Nuclear Fusion and Plasma Physics 44(02) 149

    [29]

    J E Kinsey, G M Staebler, J Candy, R E Waltz, R V Budny, 2011Nucl. Fusion 51(8) 083001

    [30]

    G M Staebler, J Candy, R E Waltz, J E Kinsey, W M Solomon, 2013Phys. Rev. Lett. 110 055003

    [31]

    Waltz R E, Staebler G M, Dorland W, Hammett G W, Kotschenreuther M, Konings J A, 1997Phys. Plasmas 4(7) 2482

    [32]

    H S Bosch, G M Hale, 1992 Nucl. Fusion 32(4) 611

    [33]

    M Marin, Y Camenen, C Bourdelle, F J Casson, R Coosemans, L Garzott, the TCV Team, 2025Nucl. Fusion 65 036015

    [34]

    E A Belli, J Candy, 2012Plasma Phys. Control. Fusion 54 015015

    [35]

    Perin M, Chandre C, Tassi E, 2016J. Phys. A: Math. Theor. 49305501

    [36]

    Dudkovskaia A V, Connor J W, Dickinson D, Hill P, Imada K, Leigh S, Wilson H R, 2023Nucl. Fusion 63 126040

    [37]

    Kates-Harbeck J, Svyatkovskiy A, Tang W, 2019Nature 568 526

    [38]

    W M Tang, G Rewoldt, 1993Physics of Fluids B: Plasma Physics 5(7) 2451

    [39]

    W M Tang, G Rewoldt, 1978Nucl. Fusion 18 1089

    [40]

    Li H, 2021Ph.D. Dissertation (DaLian: Dalian University of Technology) (in Chinese) [李慧2021博士学位论文(大连: 大连理工大学)]

  • [1] HU Yingxin, ZHAO Kaijun, LI Jiquan, YAN Longwen, XU Jianqiang, HUANG Zhihui, YU Deliang, XIE Yaoyu, DING Xiaoguan, WEN Siyu. Effects of electron cyclotron resonance heating modulation on edge turbulence driving and spreading in HL-2A tokamak. Acta Physica Sinica, doi: 10.7498/aps.74.20241263
    [2] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, doi: 10.7498/aps.73.20240730
    [3] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, doi: 10.7498/aps.72.20231077
    [4] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20222043
    [5] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230620
    [6] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230991
    [7] Luo Yi-Ming, Wang Zhan-Hui, Chen Jia-Le, Wu Xue-Ke, Fu Cai-Long, He Xiao-Xue, Liu Liang, Yang Zeng-Chen, Li Yong-Gao, Gao Jin-Ming, Du Hua-Rong, Kulun Integrated Simulation and Design Group. Transport analysis of NBI heating H-mode experiment on HL-2 A with integrated modeling. Acta Physica Sinica, doi: 10.7498/aps.71.20211941
    [8] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, doi: 10.7498/aps.70.20202003
    [9] Hao Bao-Long, Chen Wei, Li Guo-Qiang, Wang Xiao-Jing, Wang Zhao-Liang, Wu Bin, Zang Qing, Jie Yin-Xian, Lin Xiao-Dong, Gao Xiang, CFETR TEAM. Numerical simulation of synergistic effect of neoclassical tearing mode and toroidal field ripple on alpha particle loss in China Fusion Engineering Testing Reactor. Acta Physica Sinica, doi: 10.7498/aps.70.20201972
    [10] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, doi: 10.7498/aps.63.125204
    [11] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, doi: 10.7498/aps.63.035204
    [12] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, doi: 10.7498/aps.62.245206
    [13] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.61.075202
    [14] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.61.115207
    [15] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.59.5596
    [16] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.58.8448
    [17] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.55.1307
    [18] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, doi: 10.7498/aps.52.1970
    [19] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, doi: 10.7498/aps.50.1956
    [20] SHI BING-REN. ANALYTIC STUDY OF LOWER HYBRID WAVE PROPAGATION IN TOKAMAK LHCD EXPERIMENTS. Acta Physica Sinica, doi: 10.7498/aps.49.2394
Metrics
  • Abstract views:  158
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  07 March 2025

/

返回文章
返回
Baidu
map