Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Integrated modeling and experimental validation of H-mode divertor detachment and core confinement compatibility on HL-2A tokamak

SHU Yukun WANG Zhanhui XU Xinliang WU Xueke WANG Zhuo WU Ting ZHOU Yulin FU Cailong ZHONG Yijun YU Xin LI Yonggao HE Xiaoxue YANG Zengchen Kunlun Integrated Simulation and Design Group

Citation:

Integrated modeling and experimental validation of H-mode divertor detachment and core confinement compatibility on HL-2A tokamak

SHU Yukun, WANG Zhanhui, XU Xinliang, WU Xueke, WANG Zhuo, WU Ting, ZHOU Yulin, FU Cailong, ZHONG Yijun, YU Xin, LI Yonggao, HE Xiaoxue, YANG Zengchen, Kunlun Integrated Simulation and Design Group
cstr: 32037.14.aps.74.20250087
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The divertor detachment and heat flux control under high-confinement H-mode conditions in tokamaks represent critical physical challenges in current magnetic confinement fusion research. Understanding the influence of detachment on H-mode boundary transport physics, particularly its compatibility with core confinement, is central to resolving divertor detachment physics. In this study, experimental results on divertor detachment and core confinement compatibility in H-mode plasma from the HL-2A tokamak are presented. On the objective magnetohydrodynamic framework for integrated tasks (OMFIT) integrated modeling platform, a novel neural network-based fast integrated modeling method for the divertor target region is developed by integrating a new edge neural network module (Kun-Lun Neural Networks, KLNN) to enhance divertor, scrape-off-layer and edge pedestal fast prediction capability. For the first time, this method is used to conduct integrated simulations of divertor detachment and core confinement compatibility in HL-2A discharge #39007 under high-confinement mode. The simulation results are validated with experimental measurements, demonstrating that they are well consistent. Further analysis reveals that in HL-2A H-mode detachment scenarios, turbulent transport in the core region ($ 0.1 < \rho \leqslant 0.5 $) with high poloidal wave numbers $ ({k}_{\theta }{\rho }_{{\mathrm{s}}} > 1 $) is dominated by ion temperature gradient (ITG) mode, while electron-driven turbulence prevails in the region $ (0.5 < \rho \leqslant 0.7) $. In the boundary region, electron turbulence dominates at low normalized poloidal wave numbers ($ {k}_{\theta }{\rho }_{{\mathrm{s}}} < 2 $), whereas ITG modes become predominant at higher wave numbers ($ {k}_{\theta }{\rho }_{{\mathrm{s}}} > 2 $), accompanied by minor electron turbulence contributions. The research results of this work provide a certain foundation for integrated simulation and experimental verification in the study of core-edge coupling physics in tokamak devices and some insights for understanding detachment-compatible H-mode scenarios in the next-step fusion devices.
      Corresponding author: WANG Zhanhui, zhwang@swip.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12375210), the National Magnetic Confinement Fusion Research Program of China (Grant No. 2022YFE03010004), and the Science and Technology Program of Sichuan Province, China (Grant No. 2022JDRC0014).
    [1]

    孙有文, 仇志勇, 万宝年 2024 73 175202Google Scholar

    Sun Y W, Qiu Z Y, Wan B N 2024 Acta Phys. Sin. 73 175202Google Scholar

    [2]

    Ida K, Fujita T 2018 Plasma Phys. Control. Fusion 60 033001Google Scholar

    [3]

    Leonard A W 2018 Plasma Phys. Control. Fusion 60 044001Google Scholar

    [4]

    Wang L, Wang L, Wang H Q, Eldon D, Yuan Q P, Ding S, Li K D, Garofalo A M, Gong X Z, Xu G S, Guo H Y, Wu K, Meng L Y, Xu J C, Liu J B, Chen M W, Zhang B, Duan Y M, Ding F, Yang Z S, Qian J P, Huang J, Ren Q L, Leonard A W, Fenstermacher M, Lasnier C, Watkins J G, Shafer M W, Barr J, Weisberg D, McClenaghan J, Hanson J, Hyatt A, Osborne T, Thomas D, Humphreys D, Buttery R J, Luo G N, Xiao B J, Wan B N, Li J G 2021 Nat. Commun. 12 1365Google Scholar

    [5]

    孟令义 2022 博士学位论文 (合肥: 中国科学技术大学)

    Meng L Y 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [6]

    Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W C, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M, 2023 Plasma Sci. Technol. 25 015102Google Scholar

    [7]

    秦晨晨, 牟茂淋, 陈少永 2023 72 045203Google Scholar

    Qin C C, Mou M L, Chen S Y 2023 Acta Phys. Sin. 72 045203Google Scholar

    [8]

    龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏 2024 73 088901Google Scholar

    Long T, Ke R, Wu T, Gao J M, Cai L Z, Wang Z H, Xu M 2024 Acta Phys. Sin. 73 088901Google Scholar

    [9]

    Luce T C, Challis C D, Ide S, Joffrin E, Kamada Y, Politzer P A, Schweinzer J, Sips A C C, Stober J, Giruzzi G, Kessel C E, Murakami M, Na Y S, Park J M, Polevoi A R, Budny R V, Citrin J, Garcia J, Hayashi N, Hobirk J, Hudson B F, Imbeaux F, Isayama A, McDonald D C, Nakano T, Oyama N, Parail V V, Petrie T W, Petty C C, Suzuki T, Wade M R, the ITPA Integrated Operation Scenario Topical Group Members, the ASDEX-Upgrade Team, the DIII-D Team, JET EFDA Contributors, the JT-60U Team 2014 Nucl. Fusion 54 013015Google Scholar

    [10]

    Imbeaux F, Pinches S D, Lister J B, Buravand Y, Casper T, Duval B, Guillerminet B, Hosokawa M, Houlberg W, Huynh P, Kim S H, Manduchi G, Owsiak M, Palak B, Plociennik M, Rouault G, Sauter O, Strand P 2015 Nucl. Fusion 55 123006Google Scholar

    [11]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Candy J, Wang Z, Luna C J, Izzo V A, Grierson B A, Snyder P B, Holland C, Penna J, Lu G, Raum P, McCubbin A, Orlov D M, Belli E A, Ferraro N M, Prater R, Osborne T H, Turnbull A D, Staebler G M, the ATOM Team 2015 Nucl. Fusion 55 083008Google Scholar

    [12]

    Zheng J X, Song Y T, Huang X Y, Lu K, Xi W B, Ding K Z, Ye B, Niu E W 2013 Plasma Sci. Technol. 15 152Google Scholar

    [13]

    罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组 2022 71 075201Google Scholar

    Luo Y M, Wang Z H, Chen J L, Wu X K, Fu C L, He X X, Liu L, Yang Z C, Li Y G, Gao J M, Du H R, Kunlun Integrated Simulation and Design Group 2022 Acta Phys. Sin. 71 075201Google Scholar

    [14]

    罗一鸣 2022 硕士学位论文 (成都: 核工业西南物理研究院)

    Luo Y M, 2022 M S Thesis (Chendu: Southwestern Institute of Physics

    [15]

    John H S, Taylor T S, Lin-Liu Y R, Turnbull A D 1994 Plasma Phys. Controlled Fusion 3 603Google Scholar

    [16]

    Lao L L, John H S, Stambaugh R D, Kellman A G, Pfeiffer W, 1985 Nucl. Fusion 25 1421Google Scholar

    [17]

    Pan C, Staebler G M, Lao L L, Garofalo A M, Gong X, Ren Q, Smith S P 2017 Nucl. Fusion 57 036018Google Scholar

    [18]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [19]

    Yang C, Bonoli P T, Wright J C, Ding B J, Parker R, Shiraiwa S, Li M H 2014 Plasma Phys. Control. Fusion 56 125003Google Scholar

    [20]

    樊浩, 陈少永, 牟茂淋, 刘泰齐, 张业民, 唐昌建 2024 73 095204Google Scholar

    Fan H, Chen S Y, Mou M L, Liu T Q, Zhang Y M, Tang C J 2024 Acta Phys. Sin. 73 095204Google Scholar

    [21]

    Kritz A H, Hsuan H, Goldfinger R C, Batchelor D B 1982 Ray Tracing Study of Electron Cyclotron Heating in Toroidal Geometry (Pergamon) pp707-723

    [22]

    Beurskens M N A, Osborne T H, Schneider P A, Wolfrum E, Frassinetti L, Groebner R, Lomas P, Nunes I, Saarelma S, Scannell R, Snyder P B, Zarzoso D, Balboa I, Bray B, Brix M, Flanagan J, Giroud C, Giovannozzi E, Kempenaars M, Loarte A, de la Luna E, Maddison G, Maggi C F, McDonald D, Pasqualotto R, Saibene G, Sartori R, Solano E R, Walsh M, Zabeo L, The DIII-D Team, The ASDEX Upgrade Team, JET-EFDA Contributors 2011 Phys. Plasmas 18 056120Google Scholar

    [23]

    Moscheni M, Wigram M, Wu H, Meineri C, Carati C, De Marchi E, Greenwald M, Innocente P, LaBombard B, Subba F, Zanino R 2025 Nucl. Fusion 65 026025Google Scholar

    [24]

    Cowley C, Kuang A Q, Moulton D, Lore J D, Canik J, Umansky M, Wigram M, Ballinger S, Lipschultz B, Bonnin X 2023 Plasma Phys. Control. Fusion 65 035011Google Scholar

    [25]

    Liang J H, Liu S F, Wang H P, Du Y, Wang Z H, Chen Y H, Xu M, Xia F, Yang Y , Zhong W L 2022 Nucl. Fusion Plasma Phys. 42 164 [梁嘉禾, 刘松芬, 王鸿鹏, 杜月, 王占辉, 陈逸航, 许敏, 夏凡, 杨宗谕, 钟武律 2022 核聚变与等离子体物理 42 164]Google Scholar

    Liang J H, Liu S F, Wang H P, Du Y, Wang Z H, Chen Y H, Xu M, Xia F, Yang Y , Zhong W L 2022 Nucl. Fusion Plasma Phys. 42 164Google Scholar

    [26]

    刘自结 2022 博士学位论文 (合肥: 中国科学技术大学)

    Liu Z J 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [27]

    汪金鑫 2022 博士学位论文 (合肥: 中国科学技术大学)

    Wang J X 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [28]

    Zhu X B, Xia F, Yang Z Y, Liu F W, Gong X W, Liu Y H, Zhang Y, Shi P W, Chen W, Yu L M, Chen Z W, Zhong W L 2024 Nucl. Fusion Plasma Phys. 44 149 [朱晓博, 夏凡, 杨宗谕, 刘锋武, 龚新文, 刘宇航, 张毅, 施培万, 陈伟, 于利明, 陈正威, 钟武律 2024 核聚变与等离子体物理 44 149]Google Scholar

    Zhu X B, Xia F, Yang Z Y, Liu F W, Gong X W, Liu Y H, Zhang Y, Shi P W, Chen W, Yu L M, Chen Z W, Zhong W L 2024 Nucl. Fusion Plasma Phys. 44 149Google Scholar

    [29]

    Kinsey J E, Staebler G M, Candy J, Waltz R E, Budny R V 2011 Nucl. Fusion 51 083001Google Scholar

    [30]

    Staebler G M, Candy J, Waltz R E, Kinsey J E, Solomon W M 2013 Phys. Rev. Lett. 110 055003Google Scholar

    [31]

    Waltz R E, Staebler G M, Dorland W, Hammett G W, Kotschenreuther M, Konings J A 1997 Phys. Plasmas 4 2482Google Scholar

    [32]

    Bosch H S, Hale G M 1992 Nucl. Fusion 32 611Google Scholar

    [33]

    Marin M, Camenen Y, Bourdelle C, Casson F J, Coosemans R, Garzott L, the TCV Team 2025 Nucl. Fusion 65 036015Google Scholar

    [34]

    Belli E A, Candy J 2012 Plasma Phys. Control. Fusion 54 015015Google Scholar

    [35]

    Perin M, Chandre C, Tassi E, 2016 J. Phys. A: Math. Theor. 49 305501Google Scholar

    [36]

    Dudkovskaia A V, Connor J W, Dickinson D, Hill P, Imada K, Leigh S, Wilson H R 2023 Nucl. Fusion 63 126040Google Scholar

    [37]

    Kates-Harbeck J, Svyatkovskiy A, Tang W 2019 Nature 568 526Google Scholar

    [38]

    Tang W M, Rewoldt G 1993 Phys. Fluids B Plasma Phys. 5 2451Google Scholar

    [39]

    Tang W M, Rewoldt G 1978 Nucl. Fusion 18 1089Google Scholar

    [40]

    李慧 2021 博士学位论文 (大连: 大连理工大学)

    Li H 2021 Ph. D. Dissertation (Dalian: Dalian University of Technology

  • 图 1  包含KLNN程序的OMFIT等离子体剖面集成模拟工作流

    Figure 1.  Integrated simulation workflow of OMFIT plasma profiles incorporating KLNN program.

    图 2  KLBJ-NN 程序的神经网络结构

    Figure 2.  Neural network structure of KLBJ-NN program.

    图 3  KLTJ-NN 程序的神经网络结构

    Figure 3.  Neural network structure of KLTJ-NN program.

    图 4  HL-2A装置第39007炮等离子体放电参数随时间演化图 (a)等离子体储能; (b)等离子体电流; (c)电子线平均密度; (d)归一化比压$ {\beta }_{{\mathrm{n}}} $; (e) NBI, ECRH和 LHCD辅助加热功率; (f) $ {D}_{{\mathrm{\alpha }}} $射线

    Figure 4.  Time evolution of the dischargement parameters of the shot #39007 in HL-2A: (a) Plasma stored energy; (b) plasma current; (c) average electron line density; (d) $ {\beta }_{{\mathrm{n}}} $; (e) auxiliary heating power $ {P}_{{\mathrm{N}}{\mathrm{B}}{\mathrm{I}}} $, $ {P}_{{\mathrm{E}}{\mathrm{C}}{\mathrm{R}}{\mathrm{H}}} $ and $ {P}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{C}}{\mathrm{D}}} $; (f) $ {D}_{{\mathrm{\alpha }}} $ray.

    图 5  (a)真空室区等离子体辐射强度随时间演化图; (b)偏滤器靶板区等离子体辐射强度随时间演化图

    Figure 5.  (a) Time evolution of plasma radiation intensity in the vacuum chamber area; (b) time evolution of plasma radiation intensity in the divertor target plate area.

    图 6  等离子体边界靶板探针测得的热流通量随时间演化图

    Figure 6.  Time evolution of heat flux measured by the plasma boundary target plate probe.

    图 7  等离子体边界靶板探针测得的离子饱和流强度随时间演化图

    Figure 7.  Time evolution of ion saturated current intensity measured by the plasma boundary target plate probe.

    图 8  第39007炮在1320 ms时的实验值与输入剖面 (a)电子密度剖面; (b)电子温度剖面

    Figure 8.  Experiment and input profiles of the shot #39007 at the 1320 ms: (a) Electron density; (b) electron temperature.

    图 9  第39007炮在1320 ms时刻的实验值与集成模拟初始输入剖面 (a)离子温度$ {T}_{{\mathrm{i}}} $; (b)旋转速度$ \omega $

    Figure 9.  Experimental values and the initial input profiles of the integrated simulation of the shot #39007 at the 1320 ms: (a) Ion temperature $ {T}_{{\mathrm{i}}} $; (b) rotation $ \omega $.

    图 10  OMFIT集成平台TGYRO程序中不同物理量第0次和第10次迭代结果对比 (a)离子温度$ {T}_{{\mathrm{i}}} $; (b)电子温度$ {T}_{{\mathrm{e}}} $; (c)旋转速度$ \omega $

    Figure 10.  Comparison of the results of the 0th and 10th iterations of different physical quantities in the TGYRO program of the OMFIT integrated platform: (a) Ion temperature $ {T}_{{\mathrm{i}}} $; (b) electron temperature $ {T}_{{\mathrm{e}}} $; (c) rotation $ \omega $.

    图 11  OMFIT集成平台TGYRO程序中各物理量不同径向位置最后10次迭代演化结果 (a)离子温度$ {T}_{{\mathrm{i}}} $; (b)电子温度$ {T}_{{\mathrm{e}}} $; (c)旋转速度$ \omega $.

    Figure 11.  Evolution results of the last 10 iterations of various physical quantities at different radial positions in the TGYRO program of the OMFIT integrated platform: (a) Ion temperature $ {T}_{{\mathrm{i}}} $; (b) electron temperature $ {T}_{{\mathrm{e}}} $; (c) rotation $ \omega . $

    图 12  第39007炮在1320 ms时刻各物理量剖面的模拟结果与实验结果对照 (a)电子密度$ {n}_{{\mathrm{e}}} $; (b)电子温度$ {T}_{{\mathrm{e}}} $; (c)离子温度$ {T}_{{\mathrm{i}}} $; (d)旋转速度$ \omega $

    Figure 12.  Comparison between the simulation results and experimental results of the physical quantity profiles of the shot #39007 at the 1320 ms: (a) Electron density $ {n}_{{\mathrm{e}}} $; (b) electron temperature $ {T}_{{\mathrm{e}}} $; (c) ion temperature $ {T}_{{\mathrm{i}}} $; (d) rotation $ \omega . $

    图 13  第39007炮1320 ms时刻压强剖面的实验与模拟对照

    Figure 13.  Comparison of experiment and simulation pressure profiles of the shot # 39007 at the 1320 ms.

    图 14  第 39007 炮在1320 ms时刻的各成分电流剖面

    Figure 14.  Current profiles of each composition of the shot #39007 at the 1320 ms.

    图 15  第39007炮1320 ms时刻NBI注入的能量密度沉积分布

    Figure 15.  Energy density deposition distribution of NBI of the shot # 39007 at the 1320 ms.

    图 16  第39007炮放电在1320 ms时刻模拟后得到的(a)离子能量通量和(b)电子能量通量

    Figure 16.  Ion energy flux (a) and electron energy flux (b) of the shot #39007 at the 1320 ms after simulation.

    图 17  HL-2A装置第39007炮在1320 ms, $ \rho =0.1—0.99 $区域内最不稳定的两支本征模式的频谱

    Figure 17.  Frequency spectrum of the two most unstable eigenmodes in the $ \rho =0.1-0.99 $ region of the shot #39007 at the 1320 ms in HL-2A.

    图 18  39007炮在1320 ms, $ \rho =0.3, 0.6, 0.9, 0.95 $处线性不稳定性的增长率与波数的关系(蓝色为离子抗磁漂移方向, 红色为电子抗磁漂移方向)

    Figure 18.  Relationship between the growth rate of linear instability and the wave number in the $ \rho =0.3, {\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}0.6, {\mathrm{ }}0.9, {\mathrm{ }}0.95 $ of the shot #39007 at the 1320 ms (The blue color indicates the direction of the ion diamagnetic drift, the red color indicates the direction of the electron diamagnetic drift).

    表 1  HL-2A #39007炮1320 ms时刻等离子体参数的实验值与模拟初始输入值对比表

    Table 1.  Comparison table of experimental values and initial input values of simulation for plasma parameters of the shot #39007 at the 1320 ms in HL-2A.

    物理量实验值模拟初始输入值
    等离子体电流/kA150150
    纵场强度/T1.331.33
    NBI功率/kW600600
    ECRH功率/kW850850
    LHCD功率/kW450450
    欧姆电流占比0.60
    NBI驱动电流占比0.13
    自举电流占比0.27
    芯部离子温度/keV0.510.52
    芯部电子温度/keV2.252.26
    芯部电子密度/(1019 m–3)2.622.52
    电子线平均密度/(1019 m–3)1.831.91
    Greenwald密度极限比值0.420.43
    q953.323.07
    归一化比压1.671.75
    DownLoad: CSV

    表 2  HL-2A #39007炮脱靶前后时段平均的储能、能量约束时间以及H98因子变化对比表

    Table 2.  Comparison table of changes in average stored energy, average energy confinement time and average H98 factor during the time periods before and after detachment of the shot #39007 in HL-2A.

    储能/kJ能量约束时间/ms$ {H}_{98} $因子
    脱靶前时间段
    (1100—1180 ms)
    29.2 ± 1.69919.86 ±1.241.06 ± 0.069
    脱靶后时间段
    (1300—1380 ms)
    27.8 ± 1.88318.96 ± 1.251.02 ± 0.066
    下降百分比/%4.84.53.8
    DownLoad: CSV
    Baidu
  • [1]

    孙有文, 仇志勇, 万宝年 2024 73 175202Google Scholar

    Sun Y W, Qiu Z Y, Wan B N 2024 Acta Phys. Sin. 73 175202Google Scholar

    [2]

    Ida K, Fujita T 2018 Plasma Phys. Control. Fusion 60 033001Google Scholar

    [3]

    Leonard A W 2018 Plasma Phys. Control. Fusion 60 044001Google Scholar

    [4]

    Wang L, Wang L, Wang H Q, Eldon D, Yuan Q P, Ding S, Li K D, Garofalo A M, Gong X Z, Xu G S, Guo H Y, Wu K, Meng L Y, Xu J C, Liu J B, Chen M W, Zhang B, Duan Y M, Ding F, Yang Z S, Qian J P, Huang J, Ren Q L, Leonard A W, Fenstermacher M, Lasnier C, Watkins J G, Shafer M W, Barr J, Weisberg D, McClenaghan J, Hanson J, Hyatt A, Osborne T, Thomas D, Humphreys D, Buttery R J, Luo G N, Xiao B J, Wan B N, Li J G 2021 Nat. Commun. 12 1365Google Scholar

    [5]

    孟令义 2022 博士学位论文 (合肥: 中国科学技术大学)

    Meng L Y 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [6]

    Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W C, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M, 2023 Plasma Sci. Technol. 25 015102Google Scholar

    [7]

    秦晨晨, 牟茂淋, 陈少永 2023 72 045203Google Scholar

    Qin C C, Mou M L, Chen S Y 2023 Acta Phys. Sin. 72 045203Google Scholar

    [8]

    龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏 2024 73 088901Google Scholar

    Long T, Ke R, Wu T, Gao J M, Cai L Z, Wang Z H, Xu M 2024 Acta Phys. Sin. 73 088901Google Scholar

    [9]

    Luce T C, Challis C D, Ide S, Joffrin E, Kamada Y, Politzer P A, Schweinzer J, Sips A C C, Stober J, Giruzzi G, Kessel C E, Murakami M, Na Y S, Park J M, Polevoi A R, Budny R V, Citrin J, Garcia J, Hayashi N, Hobirk J, Hudson B F, Imbeaux F, Isayama A, McDonald D C, Nakano T, Oyama N, Parail V V, Petrie T W, Petty C C, Suzuki T, Wade M R, the ITPA Integrated Operation Scenario Topical Group Members, the ASDEX-Upgrade Team, the DIII-D Team, JET EFDA Contributors, the JT-60U Team 2014 Nucl. Fusion 54 013015Google Scholar

    [10]

    Imbeaux F, Pinches S D, Lister J B, Buravand Y, Casper T, Duval B, Guillerminet B, Hosokawa M, Houlberg W, Huynh P, Kim S H, Manduchi G, Owsiak M, Palak B, Plociennik M, Rouault G, Sauter O, Strand P 2015 Nucl. Fusion 55 123006Google Scholar

    [11]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Candy J, Wang Z, Luna C J, Izzo V A, Grierson B A, Snyder P B, Holland C, Penna J, Lu G, Raum P, McCubbin A, Orlov D M, Belli E A, Ferraro N M, Prater R, Osborne T H, Turnbull A D, Staebler G M, the ATOM Team 2015 Nucl. Fusion 55 083008Google Scholar

    [12]

    Zheng J X, Song Y T, Huang X Y, Lu K, Xi W B, Ding K Z, Ye B, Niu E W 2013 Plasma Sci. Technol. 15 152Google Scholar

    [13]

    罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组 2022 71 075201Google Scholar

    Luo Y M, Wang Z H, Chen J L, Wu X K, Fu C L, He X X, Liu L, Yang Z C, Li Y G, Gao J M, Du H R, Kunlun Integrated Simulation and Design Group 2022 Acta Phys. Sin. 71 075201Google Scholar

    [14]

    罗一鸣 2022 硕士学位论文 (成都: 核工业西南物理研究院)

    Luo Y M, 2022 M S Thesis (Chendu: Southwestern Institute of Physics

    [15]

    John H S, Taylor T S, Lin-Liu Y R, Turnbull A D 1994 Plasma Phys. Controlled Fusion 3 603Google Scholar

    [16]

    Lao L L, John H S, Stambaugh R D, Kellman A G, Pfeiffer W, 1985 Nucl. Fusion 25 1421Google Scholar

    [17]

    Pan C, Staebler G M, Lao L L, Garofalo A M, Gong X, Ren Q, Smith S P 2017 Nucl. Fusion 57 036018Google Scholar

    [18]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [19]

    Yang C, Bonoli P T, Wright J C, Ding B J, Parker R, Shiraiwa S, Li M H 2014 Plasma Phys. Control. Fusion 56 125003Google Scholar

    [20]

    樊浩, 陈少永, 牟茂淋, 刘泰齐, 张业民, 唐昌建 2024 73 095204Google Scholar

    Fan H, Chen S Y, Mou M L, Liu T Q, Zhang Y M, Tang C J 2024 Acta Phys. Sin. 73 095204Google Scholar

    [21]

    Kritz A H, Hsuan H, Goldfinger R C, Batchelor D B 1982 Ray Tracing Study of Electron Cyclotron Heating in Toroidal Geometry (Pergamon) pp707-723

    [22]

    Beurskens M N A, Osborne T H, Schneider P A, Wolfrum E, Frassinetti L, Groebner R, Lomas P, Nunes I, Saarelma S, Scannell R, Snyder P B, Zarzoso D, Balboa I, Bray B, Brix M, Flanagan J, Giroud C, Giovannozzi E, Kempenaars M, Loarte A, de la Luna E, Maddison G, Maggi C F, McDonald D, Pasqualotto R, Saibene G, Sartori R, Solano E R, Walsh M, Zabeo L, The DIII-D Team, The ASDEX Upgrade Team, JET-EFDA Contributors 2011 Phys. Plasmas 18 056120Google Scholar

    [23]

    Moscheni M, Wigram M, Wu H, Meineri C, Carati C, De Marchi E, Greenwald M, Innocente P, LaBombard B, Subba F, Zanino R 2025 Nucl. Fusion 65 026025Google Scholar

    [24]

    Cowley C, Kuang A Q, Moulton D, Lore J D, Canik J, Umansky M, Wigram M, Ballinger S, Lipschultz B, Bonnin X 2023 Plasma Phys. Control. Fusion 65 035011Google Scholar

    [25]

    Liang J H, Liu S F, Wang H P, Du Y, Wang Z H, Chen Y H, Xu M, Xia F, Yang Y , Zhong W L 2022 Nucl. Fusion Plasma Phys. 42 164 [梁嘉禾, 刘松芬, 王鸿鹏, 杜月, 王占辉, 陈逸航, 许敏, 夏凡, 杨宗谕, 钟武律 2022 核聚变与等离子体物理 42 164]Google Scholar

    Liang J H, Liu S F, Wang H P, Du Y, Wang Z H, Chen Y H, Xu M, Xia F, Yang Y , Zhong W L 2022 Nucl. Fusion Plasma Phys. 42 164Google Scholar

    [26]

    刘自结 2022 博士学位论文 (合肥: 中国科学技术大学)

    Liu Z J 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [27]

    汪金鑫 2022 博士学位论文 (合肥: 中国科学技术大学)

    Wang J X 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [28]

    Zhu X B, Xia F, Yang Z Y, Liu F W, Gong X W, Liu Y H, Zhang Y, Shi P W, Chen W, Yu L M, Chen Z W, Zhong W L 2024 Nucl. Fusion Plasma Phys. 44 149 [朱晓博, 夏凡, 杨宗谕, 刘锋武, 龚新文, 刘宇航, 张毅, 施培万, 陈伟, 于利明, 陈正威, 钟武律 2024 核聚变与等离子体物理 44 149]Google Scholar

    Zhu X B, Xia F, Yang Z Y, Liu F W, Gong X W, Liu Y H, Zhang Y, Shi P W, Chen W, Yu L M, Chen Z W, Zhong W L 2024 Nucl. Fusion Plasma Phys. 44 149Google Scholar

    [29]

    Kinsey J E, Staebler G M, Candy J, Waltz R E, Budny R V 2011 Nucl. Fusion 51 083001Google Scholar

    [30]

    Staebler G M, Candy J, Waltz R E, Kinsey J E, Solomon W M 2013 Phys. Rev. Lett. 110 055003Google Scholar

    [31]

    Waltz R E, Staebler G M, Dorland W, Hammett G W, Kotschenreuther M, Konings J A 1997 Phys. Plasmas 4 2482Google Scholar

    [32]

    Bosch H S, Hale G M 1992 Nucl. Fusion 32 611Google Scholar

    [33]

    Marin M, Camenen Y, Bourdelle C, Casson F J, Coosemans R, Garzott L, the TCV Team 2025 Nucl. Fusion 65 036015Google Scholar

    [34]

    Belli E A, Candy J 2012 Plasma Phys. Control. Fusion 54 015015Google Scholar

    [35]

    Perin M, Chandre C, Tassi E, 2016 J. Phys. A: Math. Theor. 49 305501Google Scholar

    [36]

    Dudkovskaia A V, Connor J W, Dickinson D, Hill P, Imada K, Leigh S, Wilson H R 2023 Nucl. Fusion 63 126040Google Scholar

    [37]

    Kates-Harbeck J, Svyatkovskiy A, Tang W 2019 Nature 568 526Google Scholar

    [38]

    Tang W M, Rewoldt G 1993 Phys. Fluids B Plasma Phys. 5 2451Google Scholar

    [39]

    Tang W M, Rewoldt G 1978 Nucl. Fusion 18 1089Google Scholar

    [40]

    李慧 2021 博士学位论文 (大连: 大连理工大学)

    Li H 2021 Ph. D. Dissertation (Dalian: Dalian University of Technology

  • [1] HU Yingxin, ZHAO Kaijun, LI Jiquan, YAN Longwen, XU Jianqiang, HUANG Zhihui, YU Deliang, XIE Yaoyu, DING Xiaoguan, WEN Siyu. Effects of electron cyclotron resonance heating modulation on edge turbulence driving and spreading in HL-2A tokamak. Acta Physica Sinica, 2025, 74(5): 055202. doi: 10.7498/aps.74.20241263
    [2] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [3] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [4] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [5] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [6] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [7] Luo Yi-Ming, Wang Zhan-Hui, Chen Jia-Le, Wu Xue-Ke, Fu Cai-Long, He Xiao-Xue, Liu Liang, Yang Zeng-Chen, Li Yong-Gao, Gao Jin-Ming, Du Hua-Rong, Kulun Integrated Simulation and Design Group. Transport analysis of NBI heating H-mode experiment on HL-2 A with integrated modeling. Acta Physica Sinica, 2022, 71(7): 075201. doi: 10.7498/aps.71.20211941
    [8] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [9] Hao Bao-Long, Chen Wei, Li Guo-Qiang, Wang Xiao-Jing, Wang Zhao-Liang, Wu Bin, Zang Qing, Jie Yin-Xian, Lin Xiao-Dong, Gao Xiang, CFETR TEAM. Numerical simulation of synergistic effect of neoclassical tearing mode and toroidal field ripple on alpha particle loss in China Fusion Engineering Testing Reactor. Acta Physica Sinica, 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [10] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [11] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [12] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [13] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [14] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [15] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [16] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [17] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [18] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [19] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [20] SHI BING-REN. ANALYTIC STUDY OF LOWER HYBRID WAVE PROPAGATION IN TOKAMAK LHCD EXPERIMENTS. Acta Physica Sinica, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
Metrics
  • Abstract views:  370
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2025
  • Accepted Date:  24 February 2025
  • Available Online:  07 March 2025
  • Published Online:  05 May 2025

/

返回文章
返回
Baidu
map