-
Edge localized modes (ELMs) in company with high-confinement mode (H-mode) will release high energy plasma fluxes to the scrape of layer (SOL). Large portions of these high heat fluxes will eventually irradiate the divertor target plates, and may erode, even melt them. In this paper, we develope a one-dimensional heat conductivity model including evaporation, radiation, melting processes of tungsten to study the erosion of the divertor tungsten targets caused by ELMs in EAST at the current and possible future operation parameters. Based on both experimental data of heat fluxes on the carbon-fibre composites divertor in EAST and possible future data of high heat fluxes, the surface temperature of slab-shaped tungsten is evaluated numerically by solving the one-dimensional model. It is found that the current Type I ELMs do not cause any noticeable changes of the tungsten target, the surface temperature being raised only several tens of degrees. Simulation results show that ELMs will not become a problem for EAST tungsten wall for the time being and the near future as long as much more severe transient events, e.g., disruption, can be avoided. When deposition energy is increased to 1 MJ/m2 with a duration of 600 μs, the tungsten plate will melt for a layer as thick as 6.8 μm.
-
Keywords:
- Tokomak /
- edge localized modes /
- tungsten /
- melting
[1] Jiang M, Xu G S, Xiao C, Guo H Y, Wan B N, Wang H Q, Wang L, Zhang L, Naulin V, Gan K F, Wang D S, Duan Y M, Yan N, Liu P, Ding S Y, Zhang W, Liu S C 2012 Plasma Phys. Control. Fusion 54 095003
[2] Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese) [徐伟, 万宝年, 谢纪康 2003 52 1970]
[3] Li M H, Ding B J, Kong E H, Zhang L, Zhang X J, Qian J P, Yan N, Han X F, San J F, Liu F K, Wang M, Xu H D, Wan B N 2011 Chin. Phys. B 20 125202
[4] Wan B N for the EAST and HT-7 Teams and International Collaborators 2009 Nucl. Fusion 49 104011
[5] Gao J M, Li W, Xia Z W, Pan Y D, Lu J, Yi P, Liu Y 2013 Chin. Phys. B 22 015202
[6] Sizyuk V, Hassanein A 2010 Nucl. Fusion 50 115004
[7] Sizyuk V, Hassanein A 2011 J. Nucl. Mater. 415 S881
[8] Hassanein A, Sizyuk T, Sizyuk V, Miloshevsky G 2010 Fusion Eng. Des. 85 1331
[9] Federici G 2003 Plasma Phys. Control. Fusion 45 1523
[10] Semak V V, Damkroger B, Kempka S 1999 J. Phys. D: Appl. Phys. 32 1819
[11] Bazylev B, Wuerz H 2002 J. Nucl. Mater. 307 69
[12] Carslaw H W, Jaeger J C 1959 Conduction of Heat in Solids (Oxford: Clarendon)
[13] Behrisch R 2010 J. Surf. Invest-X-Ray+ 4 549
[14] Yuan Y, Greuner H, Böswirth B, Krieger K, Luo G N, Xu H Y, Fu B Q, Li M, Liu W 2013 J. Nucl. Mater. 433 523
[15] Wang L, Xu G S, Guo H Y, Wang H Q, Liu S C, Gan K F, Gong X Z, Liang Y, Yan N, Chen L, Liu J B, Zhang W, Chen R, Shao L M, Xiong H, Qian J P, Shen B, Liu G J, Ding R, Zhang X J, Qin C M, Ding S, Xiang L Y, Hu G H, Wu Z W, Luo G N, Chen J L, Hu L Q, Gao X, Wan B N, Li J G, the EAST Team 2013 Nucl. Fusion 53 073028
[16] Hill D N 1997 J. Nucl. Mater. 241 182
[17] Miloshevsky G V, Hassanein A 2010 Nucl. Fusion 50 115005
[18] Kirk A, Liu Y Q, Chapman I T, Harrison J, Nardon E, Scannell R, Thornton A J, the MAST Team 2013 Plasma Phys. Control. Fusion 55 045007
[19] Xiao W W, Diamond P H, Zou X L, Dong J Q, Ding X T, Yao L H, Feng B B, Chen C Y, Zhong M, Xu M, Yuan B S, Rhee T, Kwon J M, Shi Z B, Rao J, Lei G J, Cao J Y, Zhou J, Huang M, YU D L, Huang Y, Zhao K J, Cui Z Y, Song X M, Gao Y D, Zhang Y P, Cheng J, Han X Y, Zhou Y, Dong Y B, Ji X Q, Yang Q W, Liu Y, Yan L W, Duan X R, Liu Y, the HL-2A Team 2012 Nucl. Fusion 52 114027
[20] Sang C F, Sun J Z, Wang D Z 2011 J. Nucl. Mater. 415 S204
-
[1] Jiang M, Xu G S, Xiao C, Guo H Y, Wan B N, Wang H Q, Wang L, Zhang L, Naulin V, Gan K F, Wang D S, Duan Y M, Yan N, Liu P, Ding S Y, Zhang W, Liu S C 2012 Plasma Phys. Control. Fusion 54 095003
[2] Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese) [徐伟, 万宝年, 谢纪康 2003 52 1970]
[3] Li M H, Ding B J, Kong E H, Zhang L, Zhang X J, Qian J P, Yan N, Han X F, San J F, Liu F K, Wang M, Xu H D, Wan B N 2011 Chin. Phys. B 20 125202
[4] Wan B N for the EAST and HT-7 Teams and International Collaborators 2009 Nucl. Fusion 49 104011
[5] Gao J M, Li W, Xia Z W, Pan Y D, Lu J, Yi P, Liu Y 2013 Chin. Phys. B 22 015202
[6] Sizyuk V, Hassanein A 2010 Nucl. Fusion 50 115004
[7] Sizyuk V, Hassanein A 2011 J. Nucl. Mater. 415 S881
[8] Hassanein A, Sizyuk T, Sizyuk V, Miloshevsky G 2010 Fusion Eng. Des. 85 1331
[9] Federici G 2003 Plasma Phys. Control. Fusion 45 1523
[10] Semak V V, Damkroger B, Kempka S 1999 J. Phys. D: Appl. Phys. 32 1819
[11] Bazylev B, Wuerz H 2002 J. Nucl. Mater. 307 69
[12] Carslaw H W, Jaeger J C 1959 Conduction of Heat in Solids (Oxford: Clarendon)
[13] Behrisch R 2010 J. Surf. Invest-X-Ray+ 4 549
[14] Yuan Y, Greuner H, Böswirth B, Krieger K, Luo G N, Xu H Y, Fu B Q, Li M, Liu W 2013 J. Nucl. Mater. 433 523
[15] Wang L, Xu G S, Guo H Y, Wang H Q, Liu S C, Gan K F, Gong X Z, Liang Y, Yan N, Chen L, Liu J B, Zhang W, Chen R, Shao L M, Xiong H, Qian J P, Shen B, Liu G J, Ding R, Zhang X J, Qin C M, Ding S, Xiang L Y, Hu G H, Wu Z W, Luo G N, Chen J L, Hu L Q, Gao X, Wan B N, Li J G, the EAST Team 2013 Nucl. Fusion 53 073028
[16] Hill D N 1997 J. Nucl. Mater. 241 182
[17] Miloshevsky G V, Hassanein A 2010 Nucl. Fusion 50 115005
[18] Kirk A, Liu Y Q, Chapman I T, Harrison J, Nardon E, Scannell R, Thornton A J, the MAST Team 2013 Plasma Phys. Control. Fusion 55 045007
[19] Xiao W W, Diamond P H, Zou X L, Dong J Q, Ding X T, Yao L H, Feng B B, Chen C Y, Zhong M, Xu M, Yuan B S, Rhee T, Kwon J M, Shi Z B, Rao J, Lei G J, Cao J Y, Zhou J, Huang M, YU D L, Huang Y, Zhao K J, Cui Z Y, Song X M, Gao Y D, Zhang Y P, Cheng J, Han X Y, Zhou Y, Dong Y B, Ji X Q, Yang Q W, Liu Y, Yan L W, Duan X R, Liu Y, the HL-2A Team 2012 Nucl. Fusion 52 114027
[20] Sang C F, Sun J Z, Wang D Z 2011 J. Nucl. Mater. 415 S204
Catalog
Metrics
- Abstract views: 7009
- PDF Downloads: 499
- Cited By: 0