搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

J-TEXT托卡马克锯齿振荡期间湍流传播和对称性破缺对边缘剪切流的影响

丁肖冠 赵开君 谢耀禹 陈志鹏 陈忠勇 杨州军 高丽 丁永华 温思宇 胡莹欣

引用本文:
Citation:

J-TEXT托卡马克锯齿振荡期间湍流传播和对称性破缺对边缘剪切流的影响

丁肖冠, 赵开君, 谢耀禹, 陈志鹏, 陈忠勇, 杨州军, 高丽, 丁永华, 温思宇, 胡莹欣

Effects of turbulence spreading and symmetry breaking on edge shear flow during sawtooth cycles in J-TEXT tokamak

DING Xiaoguan, ZHAO Kaijun, XIE Yaoyu, CHEN Zhipeng, CHEN Zhongyong, YANG Zhoujun, GAO Li, DING Yonghua, WEN Siyu, HU Yingxin
PDF
HTML
导出引用
  • 锯齿振荡引起热脉冲和湍流脉冲可以传播到边缘等离子体中增强边缘剪切流并诱发低约束模到高约束模的转换. 在J-TEXT托卡马克上观测了锯齿振荡期间湍流传播和对称性破缺对边缘剪切流的影响. 采用快速往复静电探针阵列测量了边缘等离子体湍流和剪切流等, 观测到锯齿崩塌后, 芯部的热脉冲和湍流传播至边缘等离子体, 且湍流脉冲快于热脉冲. 本文发现了锯齿崩塌后在边缘等离子体中引起湍流对称性破缺, 湍流传播和对称性破缺可以增强湍流雷诺协强, 从而驱动剪切流. 这些结果阐明了锯齿崩塌对边缘湍流和剪切流的增强作用过程.
    The effect of sawteeth on plasma performance and transport in the plasma of tokamak is an important problem in the fusion field. Sawtooth oscillations can trigger off heat and turbulence pulses that propagate into the edge plasma, and thus enhancing the edge shear flow and inducing a transition from low confinement mode to high confinement mode. The influences of turbulence spreading and symmetry breaking on edge shear flow with sawtooth crashes are observed in the J-TEXT tokamak. The edge plasma turbulence and shear flow are measured using a fast reciprocating electrostatic probe array. The experimental data are analyzed using some methods such as conditional average and probability distribution function. After sawtooth crashes, the heat and turbulence pulses in the core propagate to the edge, with the turbulence pulse being faster than the heat pulse. The attached figures (a)–(e) show the core electron temperature, and the edge electron temperature, turbulence intensity, turbulence drive and spreading rates, Reynolds stress and its gradient, and shearing rates, respectively. After sawtooth crashes, the edge electron temperature increases and the edge turbulence is enhanced, with turbulence preceding temperature. The enhanced edge turbulence is mainly composed of two parts: the turbulence driven by local gradient and the turbulence spreading from core to edge. The development of the estimated turbulence spreading rate is prior to that of the turbulence driving rate. The increase in the turbulence intensity can cause the turbulent Reynold stress and its gradient to increase, thereby enhancing shear flows and radial electric fields. Turbulence spreading leads the edge Reynolds stresses to develop and the shear flow to be faster than edge electron temperature. The Reynolds stress arises from the symmetry breaking of the turbulence wave number spectrum. After sawtooth collapses, the joint probability density function of radial wave number and poloidal wave number of turbulence intensity becomes highly skewed and anisotropic, exhibiting strong asymmetry, which can be seen in attached figures (f) and (g). The development of turbulence spreading flux at the edge is also prior to the particle flux driven by turbulence, indicating that turbulent energy transport is not simply accompanied by turbulent particle transport. These results show that the turbulence spreading and symmetry breaking can enhance turbulent Reynolds stress, thereby driving shear flows, after sawtooth has crashed.
  • 图 1  静电探针结构图

    Fig. 1.  Structure of electrostatic probe array.

    图 2  等离子体放电参数 (a)等离子体电流; (b)线积分电子密度; (c)环向磁场; (d) $ r/a=0.01 $处的电子温度; (e) $ r/a=0.88 $处的悬浮电位; (f)探针位移

    Fig. 2.  Plasma discharge parameters: (a) Plasma current; (b) line integrated electron density; (c) toroidal magnetic field; (d) electron temperature at $ r/a=0.01 $; (e) floating potential at $ r/a=0.88 $; (f) probe positions.

    图 3  不同径向位置处的电子温度和湍流相对强度

    Fig. 3.  Electron temperature and relative intensities of turbulence at various radial positions, respectively.

    图 4  (a) $ r/a=0.01 $处的电子温度; (b) $ r/a=0.90 $处的电子温度; (c) $ r/a=0.90 $处的悬浮电位; (d) $ r/a=0.90 $处的湍流强度; (e) $ r/a=0.90 $处的$ \boldsymbol{E}\times \boldsymbol{B} $极向速度; (f) $ r/a=0.90 $处的剪切率; (g) $ r/a=0.90 $处的电子温度和湍流强度的李萨如图; (h) $ r/a=0.90 $处锯齿崩塌前后悬浮电位的自功率谱

    Fig. 4.  (a) Electron temperature at $ r/a=0.01 $; (b) electron temperature at $ r/a=0.90 $; (c) floating potential at $ r/a=0.90 $; (d) turbulence intensity at $ r/a=0.90 $; (e) $ \boldsymbol{E}\times \boldsymbol{B} $ poloidal velocity at $ r/a=0.90 $; (f) shearing rate at $ r/a=0.90 $; (g) trajectory of electron temperature and turbulence intensity at $ r/a=0.90; $ (h) auto-power spectra of the floating potential before and after sawtooth collapse at $ r/a=0.90 $.

    图 5  (a) $ r/a=0.01 $的电子温度; (b) $ r/a=0.90 $处的湍流强度; (c) $ r/a=0.90 $处的湍流驱动率; (d) $ r/a=0.90 $处的湍流传播率

    Fig. 5.  (a) Electron temperature at $ r/a=0.01 $; (b) turbulence intensity at $ r/a=0.90 $; (c) turbulence drive at $ r/a=0.90 $; (d) turbulence spreading rates at $ r/a=0.90 $.

    图 6  (a) $ r/a=0.01 $的电子温度; (b) $ r/a=0.90 $处的湍流传播通量; (c) $ r/a=0.90 $处的湍流粒子通量; (d) $ r/a= $$ 0.90 $处的湍流传播平均射流速度; (e) $ r/a=0.90 $处的粒子输运速度

    Fig. 6.  (a) Electron temperature at $ r/a=0.01 $; (b) turbulence spreading flux at $ r/a=0.90 $; (c) turbulence particle flux at $ r/a=0.90 $; (d) mean jet velocity of turbulence spreading at $ r/a=0.90; $ (e) particle transport velocity at $ r/a=0.90 $.

    图 7  (a) $ r/a=0.01 $处的电子温度; $ ({\mathrm{b}})\;r/a=0.90 $处的径向电场强度; (c) $ r/a=0.90 $处的压强梯度; (d) $ r/a=0.90 $处的极向流对径向电场的贡献

    Fig. 7.  (a) Electron temperature at $ r/a=0.01 $; (b) radial electric fields intensity at $ r/a=0.90 $; (c) contributions of the pressure gradient at $ r/a=0.90; $ (d) poloidal flows to the radial electric field at $ r/a=0.90 $.

    图 8  (a) $ r/a=0.01 $处的电子温度; (b) $ r/a=0.90 $处的电子温度; (c) $ r/a=0.90 $处的雷诺协强; (d) $ r/a=0.90 $处的雷诺协强梯度; (e) $ r/a=0.90 $处的雷诺功; (f) $ r/a=0.90 $处的剪切率

    Fig. 8.  (a) Electron temperature at $ r/a=0.01 $; (b) electron temperature at $ r/a=0.90 $, (c) Reynolds stress at $ r/a=0.90 $; (d) gradient of Reynolds stress at $ r/a=0.90 $; (e) Reynolds power at $ r/a=0.90; $ (f) shearing rate at $ r/a=0.90 $.

    图 9  $ r/a=0.90 $处锯齿崩塌前(a)和崩塌后(b)的湍流径向和极向波数联合几率密度分布

    Fig. 9.  Joint probability density function of radial and poloidal wave numbers of turbulence intensity before (a) and after (b) sawtooth collapse at $ r/a=0.90 $.

    Baidu
  • [1]

    Hastie R J 1997 Astrophys. Space Sci. 256 177Google Scholar

    [2]

    Von Goeler S, Stodiek W, Sauthoff N 1974 Phys. Rev. Lett. 33 1201Google Scholar

    [3]

    Wanger F, Fussmann G, Grave T, Keilhacker M, Kornherr M, Lackner K, McCormick K, Müller E R, Stäbler A, Becker G, Bernhardi K, Ditte U, Eberhagen A, Gehre O, Gernhardt J, Gierke G V, Glock E, Gruber O, Haas G, Hesse M, Janeschitz G, Karger F, Kissel S, Klüber O, Lisitano G, Mayer H M, Meisel D, Mertens V, Murmann H, Poschenrieder W, Rapp H, Röhr H, Ryter F, Schneider F, Siller G, Smeulders P, Söldner F, Speth E, Steuer K H, Szymanski Z, Vollmer O 1984 Phys. Rev. Lett. 53 1453Google Scholar

    [4]

    Ido T, Kamiya K, Miura Y, Hamada Y, Nishizawa A, Kawasumi Y 2002 Phys. Rev. Lett. 88 055006Google Scholar

    [5]

    Martin Y R, Team T 2004 Plasma Phys. Controlled Fusion 46 A77Google Scholar

    [6]

    Moyer R A, Burrell K H, Carlstrom T N, Coda S, Conn R W, Doyle E J, Gohil P, Groebner R J, Kim J, Lehmer R, Peebles W A, Porkolab M, Rettig C L, Rhodes T L, Seraydarian R P, Stockdale R, Thomas D M, Tynan G R, Watkins J G 1995 Phys. Plasmas 2 2397Google Scholar

    [7]

    Burrell K H 1997 Phys. Plasmas 4 1499Google Scholar

    [8]

    Manz P, Xu M, Thakur S C, Tynan G R 2011 Plasma Phys. Controlled Fusion 53 095001Google Scholar

    [9]

    Zhao K J, Cheng J, Diamond P H, Dong J Q, Yan L W, Hong W Y, Xu M, Tynan G, Miki K, Huang Z H, Itoh K, Itoh S I, Fujisawa A, Nagashima Y, Inagaki S, Wang Z X, Wei L, Song X M, Lei G J, Li Q, Ji X Q, Liu Y, Yang Q W, Ding X T, Duan X R, HL-2A Team 2013 Nucl. Fusion 53 123015Google Scholar

    [10]

    Zhao K J, Nagashima Y, Guo Z B, Dong J Q, Yan L W, Itoh K, Itoh S -I, Li X B, Li J Q, Fujisawa A, Inagaki S, Cheng J, Xu J Q, Kosuga Y, Sasaki M, Wang Z X, Zhang H Q, Chen Y Q, Cao X G, Yu D L, Liu Y, Song X M, Xia F, Wang S 2022 Plasma Sci. Technol. 25 015101

    [11]

    Zhang J Y, Zhao K J, Yang Z J, Chen Z P, Guo Z B, Dong J Q, Itoh K, Chen Z Y, Shi Y J, Ding Y H, Li J Q, Xie Y Y, Zhang H Q, Chen Y Q, Li R, Cao X G, Du J J, Jiang J M, Zhang G S, Cheng J, Xu J Q, Xiang L, Wang N C, Wang L, Liang Y F, J-TEXT team 2023 Phys. Plasmas 30 082305Google Scholar

    [12]

    Grenfell G, Van Milligen B PH, Losada U, Ting W, Liu B, Silva C, Spolaore M, Hidalgo C, TJ-II Team 2019 Nucl. Fusion 59 016018Google Scholar

    [13]

    Long T, Diamond P H, Ke R, Chen Z P, Xu X, Tian W J, Hong R J, Cao M Y, Liu Y M, Xu M, Wang L, Yang Z J, Yuan J B, Zhou Y K, Yan Q H, Yang Q H, Shen C S, Nie L, Wang Z H, Hao G Z, Wang N C, Chen Z Y, Li J Q, Chen Wei, Zhong W L 2024 Nucl. Fusion 64 066011Google Scholar

    [14]

    Long T, Diamond P H, Ke R, Chen Z P, Cao M Y, Xu X, Xu M, Hong R J, Tian W J, Yuan J B, Liu Y M, Yan Q H, Yang Q H, Shen C S, Guo W X, Wang L, Nie L, Wang Z H, Hao G Z, Wang N C, Chen Z Y, Pan Y, Li J Q, Chen W, Zhong W L 2024 Nucl. Fusion 64 064002Google Scholar

    [15]

    Ding Y H, Wang N C, Chen Z Y, Xia D H, Yang Z J, Chen Z P, Zheng W, Yan W, Li D, Zhou S, Xu X, Zhang X Y, Mao F Y, Fang J G, Ren Z K, Chen X X, Zhang J L, Zhang X B, He Y, Zhang Q, Li Y, Bai W, Mou L K, Li F, Long T, Ke R, Gao L, Shi P, Shen C S, Liu J X, Guo W X, Wang L, Li H H, Jiang Z H, Zhang X Q, Li J C, Rao B, Cheng Z F, Zhu P, Liu M H, Xu T, Ma S X, Yang Y, Li C, Wang Z J, Zhang M, Yu K X, Hu X W, Liang Y, Yu Q, Gentle K W, Pan Y, the J-TEXT Team 2024 Nucl. Fusion 64 112005Google Scholar

    [16]

    Liang Y F, Wang N C, Ding Y H, Chen Z Y, Chen Z P, Yang Z J, Hu Q M, Cheng Z F, Wang L, Jiang Z H, Rao B, Huang Z, Li Y, Yan W, Li D, Liu H, Zeng L, Huang Y, Huang D W, Lin Z F, Zheng W, Hu F R, Zhao K J, Jiang M, Shi Y J, Zhou H, Peng S T, Guo W X, Gao L, Wang Z J, Zhang M, Yu K X, Hu X W, Yu Q, Zhuang G, Gentle K W, Pan Y, the J-TEXT Team 2019 Nucl. Fusion 59 112016Google Scholar

    [17]

    Zhao K J, Lan T, Dong J Q, Yan L W, Hong W Y, Yu C X, Liu A D, Qian J, Cheng J, Yu D L, Yang Q W, Ding X T, Liu Y, Pan C H 2006 Phys. Rev. Lett. 96 255004Google Scholar

    [18]

    Xie Y Y, Zhao K J, Yang Z J, Chen Z P, Dong J Q, Chen Z Y, Shi Y J, Tan M Z, Gao L, Ding Y H, Chen Y Q, Zhang H Q, Li R, Cao X G, Du J J, Jiang J M, Zhang G S, Cheng J, Xu J Q, Zhang J Y, Xiang L, Wang N C, Wang L, Liang Y F 2025 Plasma Phys. Controlled Fusion 67 015008Google Scholar

    [19]

    Manz P, Ribeiro T T, Scott B D, Birkenmeier G, Carralero D, Fuchert G, Müller S H, Müller H W, Stroth U, Wolfrum E 2015 Phys. Plasmas 22 022308Google Scholar

    [20]

    Wu T, Diamond P H, Nie L, Xu M, Yu Y, Hong R J, Chen Y H, Xu J Q, Long T, Zhang Y, Yan Q H, Ke R, Cheng J, Li W, Huang Z H, Yan L W, Chu X, Wang Z H, Hidalgo C 2023 Nucl. Fusion 63 126001Google Scholar

    [21]

    Long T, Diamond P H, Ke R, Nie L, Xu M, Zhang X Y, Li B L, Chen Z P, Xu X, Wang Z H, Wu T, Tian W J, Yuan J B , Yuan B D, Gong S B, Xiao C Y , Gao J M, Hao Z G, Wang N C, Chen Z Y, Yang Z J, Gao L, Ding Y H, Pan Y, Chen W, Hao G Z, Li J Q, Zhong W L, Duan X R 2021 Nucl. Fusion 61 126066

    [22]

    Gürcan Ö D, Diamond P H, Hahm T S 2006 Phys. Plasmas 13 052306Google Scholar

    [23]

    Hahm T S, Diamond P H 2018 J. Korean Phys. Soc. 73 747Google Scholar

    [24]

    Wolf R C 2003 Plasma Phys. Controlled Fusion 45 R1

    [25]

    Zhao K J, Chen Z P, Shi Y J, Diamond P H, Dong J Q, Chen Z Y, Ding Y H, Zhuang G, Liu Y B, Zhang H Q, Chen Y Q, Liu H, Cheng J, Nie L, Rao B, Cheng Z F, Gao L, Zhang X Q, Yang Z J, Wang N C, Wang L, Li J Q, Jin W, Xu J Q, Yan L W, Liang Y F, Xie Y Y, Liu B 2020 Nucl. Fusion 60 106030Google Scholar

    [26]

    Diamond P H, Kim B 1991 Phys. Fluids B 3 1621

    [27]

    Xu Y H, Yu C X, Luo J R, Mao J S, Liu B H, Li J G, Wan B N, Wan Y X 2000 Phys. Rev. Lett. 84 3867Google Scholar

    [28]

    Diamond P H, Kosuga Y, Gürcan Ö D, McDevitt C J, Hahm T S, Fedorczak N, Rice J E, Wang W X, Ku S, Kwon J M, Dif-Pradalier G, Abiteboul J, Wang L, Ko W H, Shi Y J , Ida K, Solomon W, Jhang H, Kim S S, Yi S, Ko S H, Sarazin Y, Singh R, Chang C S 2013 Nucl. Fusion 53 104019

  • [1] 胡莹欣, 赵开君, 李继全, 严龙文, 许健强, 黄治辉, 余德良, 谢耀禹, 丁肖冠, 温思宇. HL-2A托卡马克电子回旋共振加热调制对湍流驱动和传播的影响.  , doi: 10.7498/aps.74.20241263
    [2] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响.  , doi: 10.7498/aps.73.20240730
    [3] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究.  , doi: 10.7498/aps.72.20230620
    [4] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟.  , doi: 10.7498/aps.72.20230991
    [5] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动.  , doi: 10.7498/aps.72.20231077
    [6] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , doi: 10.7498/aps.72.20222043
    [7] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , doi: 10.7498/aps.70.20202003
    [8] 吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏. 超声分子束注入密度和宽度对托克马克装置加料深度的影响.  , doi: 10.7498/aps.66.195201
    [9] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用.  , doi: 10.7498/aps.63.125204
    [10] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究.  , doi: 10.7498/aps.62.245206
    [11] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响.  , doi: 10.7498/aps.61.075202
    [12] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究.  , doi: 10.7498/aps.61.115207
    [13] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , doi: 10.7498/aps.59.5596
    [14] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究.  , doi: 10.7498/aps.58.8448
    [15] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动.  , doi: 10.7498/aps.55.1307
    [16] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运.  , doi: 10.7498/aps.52.1970
    [17] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究.  , doi: 10.7498/aps.50.1521
    [18] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究.  , doi: 10.7498/aps.50.715
    [19] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究.  , doi: 10.7498/aps.50.1956
    [20] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析.  , doi: 10.7498/aps.49.2394
计量
  • 文章访问数:  392
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-27
  • 修回日期:  2024-12-09
  • 上网日期:  2024-12-25

/

返回文章
返回
Baidu
map