Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Propagation of elastic waves in saturated porous medium containing a small amount of bubbly fluid

Wang Ting Cui Zhi-Wen Liu Jin-Xia Wang Ke-Xie

Citation:

Propagation of elastic waves in saturated porous medium containing a small amount of bubbly fluid

Wang Ting, Cui Zhi-Wen, Liu Jin-Xia, Wang Ke-Xie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is very important to understand the acoustical properties of porous medium. To study the relationship between acoustical and other physical properties of porous medium will help us to use acoustical tools for determining the physical properties of porous medium. Many researchers have paid much attention to the properties of acoustic wave propagation in the gassy marine sediments based on the Biot model which is popularly used to predict the dispersion and attenuation of sound in saturated porous medium. The patchy model which contains gas inside the spherical water predicts that the existence of gas just has little effect on the propagation of acoustic wave in porous medium when the gas content is very small. However, the presence of a small number of bubbles in a fluid saturated sediment will lead to different acoustic responses. As is well known, the bubble vibration theory proposed by Keller and Miksis shows that a small number of bubbles existing in the liquid will have a great influence on sound velocity and attenuation. Therefore, in order to study the effect of a small amount of gas existing in fluid saturated porous medium on the property of acoustic wave propagation, we investigate a bubbly liquid saturated porous medium and consider the case of the bubbles vibrating linearly under the action of sound waves. First, we derive the continuity equation of the seepage according to the mass conservation of the pore fluid and the relationship between porosity differentiation and pore fluid pressure differentiation. Then, the bubble linear vibration theory given by Commander is used to deal with the time derivative of gas volume fraction in the continuity equation of the seepage, The bubble linear vibration theory gives the relationship between instantaneous bubble radius and background pressure of the medium. Through this relationship, we obtain the equation of time derivative of gas volume fraction and time derivative of pore fluid pressure. Then, we combine the obtained equation with the continuity equation of seepage, and obtain the modified continuity equation of seepage whose form is similar to that of Biot model. Finally, the modified Biot's equations for fluid saturated porous medium containing a small amount of bubbly fluid is obtained. As is well known, an effective density fluid model for acoustic propagation in sediments, derived from Biot theory, just can predict the acoustic properties of the fast compressional waves. However, the present model can predict the acoustic properties of fast, slow compressional waves and shear waves propagating in sediments. Through numerically calculating the dispersion, attenuation, amplitude ratios of pore fluid displacement to solid displacement for fast and slow compressional waves, it is found that the existence of a small number of bubbles has an influence on the acoustic properties of both the fast compressional waves and the slow compressional waves, especially the velocity of the fast compressional wave. In addition, the low-frequency speed approximation formula for the fast compressional wave is also presented. The approximate formula directly indicates the relationship between the velocity of fast compressional wave and the parameters of porous medium such as the gas volume fraction and the bubble radius. This study shows that the influence of a small number of bubbles in fluid saturated on acoustic wave propagation is noticeable. The modified Biot model presented in this paper provides one model to study the properties of acoustic waves in fluid saturated porous medium with a small number of bubbles.
      Corresponding author: Cui Zhi-Wen, cuizw@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41474098, 11134011), the Natural Science Foundation of Jilin Province of China (Grant No. 20180101282JC), and the State Key Laboratory of Acoustics, China.
    [1]

    Qiao W X, Wu W Q, Wang Y J 1996 Prog. Phys. 16 386(in Chinese) [乔文孝, 吴文虬, 王耀俊 1996 物理学进展 16 386]

    [2]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168

    [3]

    Cui Z W, Wang K X, Cao Z L, Hu H S 2004 Acta Phys. Sin. 53 3083(in Chinese) [崔志文, 王克协, 曹正良, 胡恒山 2004 53 3083]

    [4]

    Plona T J 1980 Appl. Phys. Lett. 36 259

    [5]

    Cui Z W, Wang K X 2003 Int. J. Eng. Sci. 41 2179

    [6]

    Pride S R, Berryman J G 2003 Phys. Rev. E 68 036604

    [7]

    Wang X M 2009 Appl. Acoust. 28 1(in Chinese) [王秀明 2009 应用声学 28 1]

    [8]

    Santos J E, Corber J M, Douglas J 1990 J. Acoust. Soc. Am. 87 1428

    [9]

    Cai Y Q, Li B Z, Xu C J 2006 Chin. J. Rock Mech. Eng. 25 2009(in Chinese) [蔡袁强, 李宝忠, 徐长节 2006 岩石力学与工程学报 25 2009]

    [10]

    Li W H 2002 Northwest. Seismological J. 24 303(in Chinese) [李伟华 2002 西北地震学报 24 303]

    [11]

    White J E, Mikhaylova N G, Lyakhovitskiy F M 1975 J. Acoust. Soc. Am. 57 S30

    [12]

    Johnson D L 2001 J. Acoust. Soc. Am. 110 682

    [13]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [14]

    Prosperetti A, Crum L A, Commander K W 1988 J. Acoust. Soc. Am. 83 502

    [15]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [16]

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304(in Chinese) [王勇, 林书玉, 张小丽 2013 62 064304]

    [17]

    Wang Y, Lin S Y, Mo R Y, Zhang X L 2013 Acta Phys. Sin. 62 134304(in Chinese) [王勇, 林书玉, 莫润阳, 张小丽 2013 62 134304]

    [18]

    Wang Y, Lin S Y, Zhang X L 2014 Acta Phys. Sin. 63 034301(in Chinese) [王勇, 林书玉, 张小丽 2014 63 034301]

    [19]

    Zhu L G 2009 Ship Sci. Tech. 10 64(in Chinese) [祝令国 2009 舰船科学技术 31 64]

    [20]

    Wang H B, Wang Z Q, Zhang H Y, Zhang W P 2005 Shipbuild. China 46 44(in Chinese) [王虹斌, 王芝秋, 张洪雨, 张文平 2005 中国造船 46 44]

    [21]

    Anderson A L, Hampton L D 1980 J. Acoust. Soc. Am. 67 1890

    [22]

    Yang X M, Church C C 2005 J. Acoust. Soc. Am. 118 3595

    [23]

    Mantouka A, Dogan H, White P R, Leighton T G 2016 J. Acoust. Soc. Am. 140 274

    [24]

    Zheng G Y, Huang Y W 2016 Acta Phys. Sin. 65 234301(in Chinese) [郑广赢, 黄益旺 2016 65 234301]

    [25]

    Dvorkin J, Nur A 1993 Geophysics 58 523

    [26]

    Biot M A 1941 J. Appl. Phys. 12 155

    [27]

    Hu H S 2003 Acta Phys. Sin. 52 1954(in Chinese) [胡恒山 2003 52 1954]

  • [1]

    Qiao W X, Wu W Q, Wang Y J 1996 Prog. Phys. 16 386(in Chinese) [乔文孝, 吴文虬, 王耀俊 1996 物理学进展 16 386]

    [2]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168

    [3]

    Cui Z W, Wang K X, Cao Z L, Hu H S 2004 Acta Phys. Sin. 53 3083(in Chinese) [崔志文, 王克协, 曹正良, 胡恒山 2004 53 3083]

    [4]

    Plona T J 1980 Appl. Phys. Lett. 36 259

    [5]

    Cui Z W, Wang K X 2003 Int. J. Eng. Sci. 41 2179

    [6]

    Pride S R, Berryman J G 2003 Phys. Rev. E 68 036604

    [7]

    Wang X M 2009 Appl. Acoust. 28 1(in Chinese) [王秀明 2009 应用声学 28 1]

    [8]

    Santos J E, Corber J M, Douglas J 1990 J. Acoust. Soc. Am. 87 1428

    [9]

    Cai Y Q, Li B Z, Xu C J 2006 Chin. J. Rock Mech. Eng. 25 2009(in Chinese) [蔡袁强, 李宝忠, 徐长节 2006 岩石力学与工程学报 25 2009]

    [10]

    Li W H 2002 Northwest. Seismological J. 24 303(in Chinese) [李伟华 2002 西北地震学报 24 303]

    [11]

    White J E, Mikhaylova N G, Lyakhovitskiy F M 1975 J. Acoust. Soc. Am. 57 S30

    [12]

    Johnson D L 2001 J. Acoust. Soc. Am. 110 682

    [13]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [14]

    Prosperetti A, Crum L A, Commander K W 1988 J. Acoust. Soc. Am. 83 502

    [15]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [16]

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304(in Chinese) [王勇, 林书玉, 张小丽 2013 62 064304]

    [17]

    Wang Y, Lin S Y, Mo R Y, Zhang X L 2013 Acta Phys. Sin. 62 134304(in Chinese) [王勇, 林书玉, 莫润阳, 张小丽 2013 62 134304]

    [18]

    Wang Y, Lin S Y, Zhang X L 2014 Acta Phys. Sin. 63 034301(in Chinese) [王勇, 林书玉, 张小丽 2014 63 034301]

    [19]

    Zhu L G 2009 Ship Sci. Tech. 10 64(in Chinese) [祝令国 2009 舰船科学技术 31 64]

    [20]

    Wang H B, Wang Z Q, Zhang H Y, Zhang W P 2005 Shipbuild. China 46 44(in Chinese) [王虹斌, 王芝秋, 张洪雨, 张文平 2005 中国造船 46 44]

    [21]

    Anderson A L, Hampton L D 1980 J. Acoust. Soc. Am. 67 1890

    [22]

    Yang X M, Church C C 2005 J. Acoust. Soc. Am. 118 3595

    [23]

    Mantouka A, Dogan H, White P R, Leighton T G 2016 J. Acoust. Soc. Am. 140 274

    [24]

    Zheng G Y, Huang Y W 2016 Acta Phys. Sin. 65 234301(in Chinese) [郑广赢, 黄益旺 2016 65 234301]

    [25]

    Dvorkin J, Nur A 1993 Geophysics 58 523

    [26]

    Biot M A 1941 J. Appl. Phys. 12 155

    [27]

    Hu H S 2003 Acta Phys. Sin. 52 1954(in Chinese) [胡恒山 2003 52 1954]

  • [1] Shi Zhi-Qi, He Xiao, Liu Lin, Chen De-Hua. Simulation and analysis of elastic waves in partially saturated double-porosity media based on finite difference method. Acta Physica Sinica, 2024, 73(10): 100201. doi: 10.7498/aps.73.20240227
    [2] Shi Zhi-Qi, He Xiao, Liu Lin, Chen De-Hua, Wang Xiu-Ming. Elastic wave propagation characteristics in unsaturated double-porosity medium under capillary pressure. Acta Physica Sinica, 2023, 72(6): 069101. doi: 10.7498/aps.72.20222063
    [3] Li Hong-Xing, Zhang Jia-Hui, Fan Jia-Wei, Tao Chun-Hui, Xiao Kun, Huang Guang-Nan, Sheng Shu-Zhong, Gong Meng. Wave propagation theory of multi-scale wave induced flow in unsaturated porous medium. Acta Physica Sinica, 2022, 71(8): 089101. doi: 10.7498/aps.71.20211463
    [4] Li Yin-Ming, Kong Peng, Bi Ren-Gui, He Zhao-Jian, Deng Ke. Valley topological states in double-surface periodic elastic phonon crystal plates. Acta Physica Sinica, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [5] Zhang Xian-Mei, Wang Cheng-Hui, Guo Jian-Zhong, Mo Run-Yang, Hu Jing, Chen Shi. Dynamics of bubbles in spherical liquid cavity wrapped by elastic medium. Acta Physica Sinica, 2021, 70(21): 214305. doi: 10.7498/aps.70.20210869
    [6] Luo Quan-Bin, Huang Xue-Qin, Deng Wei-Yin, Wu Ying, Lu Jiu-Yang, Liu Zheng-You. Type-II Dirac points and edge transports in phononic crystal plates. Acta Physica Sinica, 2021, 70(18): 184302. doi: 10.7498/aps.70.20210712
    [7] Zhang Tao-Ran, Mo Run-Yang, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong. Interaction between bubble and particle in spherical liquid cavity surround by an elastic medium. Acta Physica Sinica, 2020, 69(23): 234301. doi: 10.7498/aps.69.20200764
    [8] Su Na-Na, Han Qing-Bang, Jiang Jian. Guided circumferential wave propagation characteristics for porous cylinder immersed in infinite fluid. Acta Physica Sinica, 2019, 68(8): 084301. doi: 10.7498/aps.68.20182300
    [9] Zheng Guang-Ying, Huang Yi-Wang. Effect of linear bubble vibration on wave propagation in unsaturated porous medium containing air bubbles. Acta Physica Sinica, 2016, 65(23): 234301. doi: 10.7498/aps.65.234301
    [10] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Propagation of nonlinear waves in the bubbly liquids. Acta Physica Sinica, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [11] Song Yong-Jia, Hu Heng-Shan. Variation of effective elastic moduli of a solid with transverse isotropy due to aligned inhomogeneities. Acta Physica Sinica, 2014, 63(1): 016202. doi: 10.7498/aps.63.016202
    [12] Kong Li-Yun, Wang Yi-Bo, Yang Hui-Zhu. Wavefield propagation characteristics in fracture-induced TTI double-porosity medium. Acta Physica Sinica, 2013, 62(13): 139101. doi: 10.7498/aps.62.139101
    [13] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Linear wave propagation in the bubbly liquid. Acta Physica Sinica, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [14] Wang Yong, Lin Shu-Yu, Mo Run-Yang, Zhang Xiao-Li. Vibration of the bubble in bubbly liquids. Acta Physica Sinica, 2013, 62(13): 134304. doi: 10.7498/aps.62.134304
    [15] Liu Qi-Neng. Transmission characteristics of elastic wave in 1D solid-solid cylindrical phononic crystal. Acta Physica Sinica, 2011, 60(3): 034301. doi: 10.7498/aps.60.034301
    [16] Cui Zhi-Wen, Liu Jin-Xia, Wang Chun-Xia, Wang Ke-Xie. Elastic waves in Maxwell fluid-saturated porous media with the squirt flow mechanism. Acta Physica Sinica, 2010, 59(12): 8655-8661. doi: 10.7498/aps.59.8655
    [17] Zhang Xin-Ming, Liu Jia-Qi, Liu Ke-An. Porosity inversion of 1-D two-phase medium with wavelet multiscale method. Acta Physica Sinica, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [18] Du Qi-Zhen, Liu Lian-Lian, Sun Jing-Bo. Numerical modeling of seismic wavefield in anisotropic viscoelastic porous medium with the pseudo-spectral method. Acta Physica Sinica, 2007, 56(10): 6143-6149. doi: 10.7498/aps.56.6143
    [19] Guan Wei, Hu Heng-Shan, Chu Zhao-Tan. Formulation of the acoustically-induced electromagnetic field in a porous formation in terms of Hertz vectors and simulation of the borehole electromagnetic field excited by an acoustic multipole source. Acta Physica Sinica, 2006, 55(1): 267-274. doi: 10.7498/aps.55.267
    [20] Hu Heng-Shan. Acoustic head wave on the borehole wall in a porous formation and the causes for its accompanying electromagnetic field. Acta Physica Sinica, 2003, 52(8): 1954-1959. doi: 10.7498/aps.52.1954
Metrics
  • Abstract views:  6119
  • PDF Downloads:  196
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2018
  • Accepted Date:  08 March 2018
  • Published Online:  05 June 2018

/

返回文章
返回
Baidu
map