Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Restraining effect of resonant propagation of acousticwaves in liquids with mixed bubbles

Chen Shi Zhang Di Wang Cheng-Hui Zhang Yin-Hong

Citation:

Restraining effect of resonant propagation of acousticwaves in liquids with mixed bubbles

Chen Shi, Zhang Di, Wang Cheng-Hui, Zhang Yin-Hong
PDF
HTML
Get Citation
  • There is the resonant propagation phenomenon of acoustic wave in bubbly liquid, i.e., the attenuation coefficient and the velocity of acoustic wave in range of resonant frequencies of bubbles can become very large. In previous papers, generally adopted was a simplified assumption that there is a single type of bubble in a liquid. It restricts our understanding of the resonant propagation phenomenon. In this paper the resonant propagation of acoustic wave in a liquid with mixed bubbles is studied. Here, static radii of bubbles are different from each other. Research results show that there is a restraining effect of the resonant propagation of acoustic wave in liquid with mixed bubbles. The attenuation coefficient and the velocity of acoustic wave in the liquid with mixed bubbles are obviously less than those in the liquid containing bubbles with the same static radius. The nature of the restraining effect is that the resonant vibration of bubbles is weakened due to the interaction between bubbles with different static radii. Some important properties of the restraining effect are investigated for all kinds of liquid systems with mixed bubbles. Moreover, the effect of the viscosity and the rate of cavitation on the restraining effect are also studied. Research results are shown as follows. 1) Comparing with bigger bubbles, resonant characteristic quantities (such as the attenuation coefficient and the velocity of acoustic wave) caused by smaller bubbles can be reduced more obviously; 2) the efficiency of the restraining effect increases with the number of types of bubbles increasing, however, it will gradually reach to a stable value when the number of types of bubbles is large; 3) the bandwidth of the resonant absorption of acoustic wave is dramatically affected by the distribution function of the percentage of the number of bubbles. The bandwidth of the resonant absorption will become large as the percentage of the number of smaller bubbles increases.
      Corresponding author: Chen Shi, chenshi@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474191), and the Fundamental Research Funds for the Central Universities, China (Grant No. GK201703012).
    [1]

    陈伟中 2014 声空化物理 (北京: 科学出版社)第371−421页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) pp371−421 (in Chinese)

    [2]

    Christopher E B 1995 Cavitation and Bubble Dynamics (Oxford: OxfordvUniversity Press) pp15−47

    [3]

    应崇福 2008 应用声学 27 333Google Scholar

    Ying C F 2008 J. Appl. Acoust. 27 333Google Scholar

    [4]

    王寻, 陈伟中, 杨景 2015 声学技术 34 33

    Wang X, Chen W Z, Yang J 2015 Tech. Acoust. 34 33

    [5]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732Google Scholar

    [6]

    徐贞, 张迪, 陈时, 等 2018 中国科学: 物理学 力学 天文学 48 044301

    Xu Z, Zhang D, Chen S, et al. 2018 Sci. Sin. Phys. Mech. Astron. 48 044301

    [7]

    王勇, 林书玉, 张小丽 2013 62 064304

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304

    [8]

    王成会, 林书玉 2008 陕西师范大学学报 36 30Google Scholar

    Wang C H, Lin S Y 2008 J. Shaanxi Norm. Univ. 36 30Google Scholar

    [9]

    王勇, 林书玉, 张小丽 2014 63 034301Google Scholar

    Wang Y, Lin S Y, Zhang X L 2014 Acta Phys. Sin. 63 034301Google Scholar

    [10]

    陈伟中 2018 应用声学 37 675Google Scholar

    Chen W Z 2018 J. Appl. Acoust. 37 675Google Scholar

    [11]

    朱哲民, 杜功焕 1995 声学学报 6 425

    Zhu Z M, Du H G 1995 Acta Acust. 6 425

    [12]

    An Y 2012 Phys. Rev. E 85 016305Google Scholar

    [13]

    Vanhille C, Campospozuelo C 2013 Ultrason. Sonochem. 20 963Google Scholar

    [14]

    Vanhille C, Campospozuelo C 2012 Ultrason. Sonochem. 19 217Google Scholar

    [15]

    Lebon G S B, Tzanakis I, Djambazov G, et al. 2017 Ultrason. Sonochem. 37 660Google Scholar

    [16]

    Zhang Y, Guo Z, Du X 2018 Appl. Therm. Eng. 133 483Google Scholar

    [17]

    Zhang Y, Du X 2015 Ultrason. Sonochem. 26 119Google Scholar

    [18]

    Trujillo F J 2018 Ultrason. Sonochem. 47 75Google Scholar

    [19]

    张鹏利, 林书玉, 张涛 2013 中国科学: 物理学 力学 天文学 43 249

    Zhang P L, Lin S Y, Zhang T 2013 Sci. Sin. Phys. Mech. Astron. 43 249

    [20]

    苗博雅, 安宇 2015 64 225Google Scholar

    Miao B Y, An Y 2015 Acta Phys. Sin. 64 225Google Scholar

    [21]

    王德鑫, 那仁满都拉 2018 67 037802Google Scholar

    Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 037802Google Scholar

    [22]

    Keller J B, Kolodner I I 1956 J. Appl. Phys. 2 71152

  • 图 1  含两种混合气泡的液体中声波的衰减谱

    Figure 1.  Attenuation spectrums of acoustic waves in liquids with two kinds of bubbles.

    图 2  含两种混合气泡的液体中声波衰减谱的相对峰值和相对带宽与${\theta _1}$(或者${\theta _2}$)的关系

    Figure 2.  Relationships between ${\theta _1}$(${\theta _2}$)and relative peak values or bandwidths of attenuation spectrums of acoustic waves in liquids with two kinds of bubbles.

    图 3  在含两种混合气泡的液体中, 不同${\theta _1}$(或者${\theta _2}$)对应的声波的声速谱 图中${\theta _1}$分别是0, 0.20, 0.40, 0.60, 0.80, 0.90, 0.95, 1.00, 或者${\theta _2}$分别是0, 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1.00. 左边的箭头表示${\theta _2}$增加的方向, 右边的箭头表示${\theta _1}$增加的方向

    Figure 3.  Speed spectrums for different ${\theta _1}$(or ${\theta _2}$) in liquids with two kinds of bubbles. Here ${\theta _1}$ is 0, 0.20, 0.40, 0.60, 0.80, 0.90, 0.95 and 1.00, respectively. ${\theta _2}$ is 0, 0.05, 0.10, 0.20, 0.40, 0.60, 0.80 and 1.00, respectively. The white arrow indicates the direction of increase of ${\theta _2}$, the gray arrow indicates the direction of increase of ${\theta _1}$.

    图 4  在含两种混合气泡的液体中, ${\beta _0}$不同时声波的相对衰减谱 图中${\theta _1} = 0.8$, ${\beta _0}$分别是${10^{ - 6}}$, ${10^{ - 4}}$, ${10^{ - 3}}$${10^{ - 2}}$, 箭头表示该角频率区域${\beta _0}$增加的方向

    Figure 4.  Attenuation spectrums for different ${\beta _0}$ in liquids with two kinds of bubbles. Here, ${\theta _1} = 0.8$, ${\beta _0}$ is ${10^{ - 6}}$, ${10^{ - 4}}$, ${10^{ - 3}}$ and ${10^{ - 2}}$, respectively. The arrow indicates the direction of increase of ${\beta _0}$.

    图 5  在含两种混合气泡的液体中, ${\beta _0}$不同时声波的声速谱 图中${\theta _1} = 0.8$, ${\beta _0}$分别是${10^{ - 6}}$, ${10^{ - 4}}$, ${10^{ - 3}}$${10^{ - 2}}$, 箭头表示该角频率区域${\beta _0}$增加的方向

    Figure 5.  Speed spectrums for different ${\beta _0}$ in liquids with two kinds of bubbles. Here, ${\theta _1} = 0.8$, ${\beta _0}$ is ${10^{ - 6}}$, ${10^{ - 4}}$, ${10^{ - 3}}$ and ${10^{ - 2}}$, respectively. The arrow indicates the direction of increase of ${\beta _0}$.

    图 6  在两种混合气泡的液体中黏度不同时声波的衰减谱

    Figure 6.  Attenuation spectrums for different viscosity in liquids with two kinds of bubbles.

    图 7  在含多种混合气泡的液体中气泡的种类数不同时声波的衰减谱. 图中${\theta _j} = 1/M$, ${R_j} = 20 \!+ \!40\left( {j\! -\! 1} \right)/\left( {M \!-\! 1} \right)$$\left( {{\text{μ}}{\rm{m}}} \right)$($j = 1, 2, \cdots, M$).

    Figure 7.  Attenuation spectrums for different $M$. Here, ${\theta _j} = 1/M$, ${R_j} = 20 + 40\left( {j - 1} \right)/\left( {M - 1} \right)\left( {{\text{μ}}{\rm{m}}} \right)$, $j = 1, 2, $$\cdots, M$.

    图 8  气泡满足不同分布时声波的衰减谱 细实线是参考曲线, 它对应着存在两种混合气泡的情况; 对其他曲线而言, 各个气泡的静态半径分别是R = 20 + 40(j – 1)/ $\left( {M - 1} \right)\left( {{\text{μ}}{\rm{m}}} \right)$, $j = 1, 2, \cdots, M$, $M = 21$

    Figure 8.  Attenuation spectrums for different distribution functions of bubble number. The thin solid line indicates the systems with two kinds of bubbles. Here, R = $ 20 + 40\left( {j - 1} \right)/\left( {M - 1} \right)\left( {{\text{μ}}{\rm{m}}} \right)$, $j = 1, 2, \cdots, M$.

    Baidu
  • [1]

    陈伟中 2014 声空化物理 (北京: 科学出版社)第371−421页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) pp371−421 (in Chinese)

    [2]

    Christopher E B 1995 Cavitation and Bubble Dynamics (Oxford: OxfordvUniversity Press) pp15−47

    [3]

    应崇福 2008 应用声学 27 333Google Scholar

    Ying C F 2008 J. Appl. Acoust. 27 333Google Scholar

    [4]

    王寻, 陈伟中, 杨景 2015 声学技术 34 33

    Wang X, Chen W Z, Yang J 2015 Tech. Acoust. 34 33

    [5]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732Google Scholar

    [6]

    徐贞, 张迪, 陈时, 等 2018 中国科学: 物理学 力学 天文学 48 044301

    Xu Z, Zhang D, Chen S, et al. 2018 Sci. Sin. Phys. Mech. Astron. 48 044301

    [7]

    王勇, 林书玉, 张小丽 2013 62 064304

    Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304

    [8]

    王成会, 林书玉 2008 陕西师范大学学报 36 30Google Scholar

    Wang C H, Lin S Y 2008 J. Shaanxi Norm. Univ. 36 30Google Scholar

    [9]

    王勇, 林书玉, 张小丽 2014 63 034301Google Scholar

    Wang Y, Lin S Y, Zhang X L 2014 Acta Phys. Sin. 63 034301Google Scholar

    [10]

    陈伟中 2018 应用声学 37 675Google Scholar

    Chen W Z 2018 J. Appl. Acoust. 37 675Google Scholar

    [11]

    朱哲民, 杜功焕 1995 声学学报 6 425

    Zhu Z M, Du H G 1995 Acta Acust. 6 425

    [12]

    An Y 2012 Phys. Rev. E 85 016305Google Scholar

    [13]

    Vanhille C, Campospozuelo C 2013 Ultrason. Sonochem. 20 963Google Scholar

    [14]

    Vanhille C, Campospozuelo C 2012 Ultrason. Sonochem. 19 217Google Scholar

    [15]

    Lebon G S B, Tzanakis I, Djambazov G, et al. 2017 Ultrason. Sonochem. 37 660Google Scholar

    [16]

    Zhang Y, Guo Z, Du X 2018 Appl. Therm. Eng. 133 483Google Scholar

    [17]

    Zhang Y, Du X 2015 Ultrason. Sonochem. 26 119Google Scholar

    [18]

    Trujillo F J 2018 Ultrason. Sonochem. 47 75Google Scholar

    [19]

    张鹏利, 林书玉, 张涛 2013 中国科学: 物理学 力学 天文学 43 249

    Zhang P L, Lin S Y, Zhang T 2013 Sci. Sin. Phys. Mech. Astron. 43 249

    [20]

    苗博雅, 安宇 2015 64 225Google Scholar

    Miao B Y, An Y 2015 Acta Phys. Sin. 64 225Google Scholar

    [21]

    王德鑫, 那仁满都拉 2018 67 037802Google Scholar

    Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 037802Google Scholar

    [22]

    Keller J B, Kolodner I I 1956 J. Appl. Phys. 2 71152

  • [1] Feng Bo, Xu Wen-Jun, Cai Jie-Xiong, Wu Ru-Shan, Wang Hua-Zhong. Phase-preserving theory and its linearization approximation for forward scattering field of scalar acoustic wave equation. Acta Physica Sinica, 2023, 72(15): 159101. doi: 10.7498/aps.72.20230194
    [2] Zheng Ya-Xin, Naranmandula. Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [3] Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211266
    [4] Qinghim. Acoustic cavitation characteristics of mixed bubble groups composed of different types of bubbles. Acta Physica Sinica, 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [5] Qinghim, Naranmandula. Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles. Acta Physica Sinica, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [6] Wang Ru-Jia, Wu Shi-Ping, Chen Wei. Propagation of thermoviscoelastic wave in inhomogeneous alloy melt with varying temperature. Acta Physica Sinica, 2019, 68(4): 048101. doi: 10.7498/aps.68.20181923
    [7] Li Jia-Wei, Lu Li-Cheng, Guo Sheng-Ming, Ma Li. Inversion of seabed attenuation by using single mode extracted by warping transform. Acta Physica Sinica, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [8] Zhang Pan, Zhao Xue-Dan, Zhang Guo-Hua, Zhang Qi, Sun Qi-Cheng, Hou Zhi-Jian, Dong Jun-Jun. Acoustic detection and nonlinear response of granular materials under vertical vibrations. Acta Physica Sinica, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [9] Shi Jiu-Lin, Guo Peng-Feng, Huang Yu, Qian Jia-Cheng, Wang Hong-Peng, Liu Juan, He Xing-Dao. Influences of temperature, humidity and pressure on the attenuation characteristics of laser beam in water. Acta Physica Sinica, 2015, 64(2): 024215. doi: 10.7498/aps.64.024215
    [10] Shen Zhuang-Zhi. Dynamical behaviors of cavitation bubble under acoustic standing wave field. Acta Physica Sinica, 2015, 64(12): 124702. doi: 10.7498/aps.64.124702
    [11] Miao Bo-Ya, An Yu. Cavitation of two kinds of bubble mixtures. Acta Physica Sinica, 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [12] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Propagation of nonlinear waves in the bubbly liquids. Acta Physica Sinica, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [13] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Linear wave propagation in the bubbly liquid. Acta Physica Sinica, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [14] Zhang Jun, Zeng Xin-Wu, Chen Dan, Zhang Zhen-Fu. Generation of negative pressure of underwater intensive acoustic pulse and cavitation bubble dynamics. Acta Physica Sinica, 2012, 61(18): 184302. doi: 10.7498/aps.61.184302
    [15] Shen Zhuang-Zhi, Lin Shu-Yu. Chaotic characteristics of gas bubble motion in acoustic field. Acta Physica Sinica, 2011, 60(10): 104302. doi: 10.7498/aps.60.104302
    [16] He Xing-Dao, Xia Jian, Shi Jiu-Lin, Liu Juan, Li Shu-Jing, Liu Jian-An, Fang Wei. Influences of effective gain length and attenuation coefficient on output energy of stimulated Brillouin scattering in water. Acta Physica Sinica, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [17] Liu Juan, Bai Jian-Hui, Ni Kai, Jing Hong-Mei, He Xing-Dao, Liu Da-He. Attenuation characteristics of laser beam in water. Acta Physica Sinica, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [18] Liu Hai-Jun, An Yu. Pressure distribution outside a single cavitation bubble. Acta Physica Sinica, 2004, 53(5): 1406-1412. doi: 10.7498/aps.53.1406
    [19] Du Qi-Zhen, Yang Hui-Zhu. . Acta Physica Sinica, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [20] WANG KE-BIN, LI SHI, TANG XIAO-WEI. THE γ-RAY ATTENUATION COEFFICIENT OF ALUMINIUM MEASURED WITH A RESONANT ABSORPTION SPECTROMETER. Acta Physica Sinica, 1981, 30(9): 1279-1283. doi: 10.7498/aps.30.1279
Metrics
  • Abstract views:  7117
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2018
  • Accepted Date:  28 January 2019
  • Available Online:  23 March 2019
  • Published Online:  05 April 2019

/

返回文章
返回
Baidu
map