-
Light trapping is one of the key issues to improve the light absorption and increase the efficiency of thin film solar cell. In this paper, a novel combined light trapping structure consisting of back one-dimensional (1D) Ag nano-grating and front conformal antireflective coating is proposed for amorphous silicon (α-Si) thin film solar cell. By a numerical simulation based on the finite element method, the effect of the combination on the light absorption of α-Si solar cell is investigated, and the Ag nano-grating parameters are optimized. The results show that the combined light trapping structure can enhance broadband absorption in thin-film solar cell. For the α-Si solar cell with the combined structure at P=600 nm, H=90 nm, and W=180 nm, the integrated absorption is enhanced by 103% under AM1.5 illumination at normal incidence in a wavelength range of 300–800 nm, and the photon absorption rate is increased by 300% in a long-wavelength range of 650–750 nm compared with the reference cell. We discuss the physical mechanism of absorption enhancement in different wavelength ranges from the electrical field amplitude distributions in the solar cells. In addition, the solar cell with the combined structure is much less sensitive to the angle of incident light.
[1] Chutinan A, John S 2008 Phys. Rev. A: At. Mol. Opt. Phys. 78 3825
[2] Li X F, Chen Y R, Miao J, Zhou P 2007 Opt. Express 15 1907
[3] Zeman M, Isabella O, Jaeger K 2010 Res. Soc. Symp. Proc. 3 1245
[4] Matheu P, Lim S H, Derkacs D, McPheeters C 2008 Phys. Rev. B 93 3108
[5] Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 62 120101]
[6] Khaldun A, Khalid O, Hassan Z 2012 Sol. Energy 86 541
[7] Ahn H J, Kim S I, Yoon J C 2012 Nanoscale 4 4464
[8] Byun S J, Byun S Y 2011 Curr. Appl. Phys. 11 23
[9] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[10] Derkacs D, Lim S H, Matheu P, Yu E T 2006 Appl. Phys. Lett. 89 3103
[11] Pillai S, Catchpole K R, Trupke T, Green M A 2007 J. Appl. Phys. 101 3105
[12] Palik E D 1998 Handbook of Optical Constants of Solids (USA: Academic Press) p350, 571, 369
[13] Soderstrom K, Haug F J 2010 Appl. Phys. Lett. 96 3508
[14] Beckers T, Bittkau K 2010 Phys. Status Solidi. 207 661
[15] Li.Y, Okuno Y 2012 Prog. Photovolt: Res. Appl. 10 1002
[16] Lin H Y, Yang K 2012 Opt. Express 20 104
-
[1] Chutinan A, John S 2008 Phys. Rev. A: At. Mol. Opt. Phys. 78 3825
[2] Li X F, Chen Y R, Miao J, Zhou P 2007 Opt. Express 15 1907
[3] Zeman M, Isabella O, Jaeger K 2010 Res. Soc. Symp. Proc. 3 1245
[4] Matheu P, Lim S H, Derkacs D, McPheeters C 2008 Phys. Rev. B 93 3108
[5] Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 62 120101]
[6] Khaldun A, Khalid O, Hassan Z 2012 Sol. Energy 86 541
[7] Ahn H J, Kim S I, Yoon J C 2012 Nanoscale 4 4464
[8] Byun S J, Byun S Y 2011 Curr. Appl. Phys. 11 23
[9] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[10] Derkacs D, Lim S H, Matheu P, Yu E T 2006 Appl. Phys. Lett. 89 3103
[11] Pillai S, Catchpole K R, Trupke T, Green M A 2007 J. Appl. Phys. 101 3105
[12] Palik E D 1998 Handbook of Optical Constants of Solids (USA: Academic Press) p350, 571, 369
[13] Soderstrom K, Haug F J 2010 Appl. Phys. Lett. 96 3508
[14] Beckers T, Bittkau K 2010 Phys. Status Solidi. 207 661
[15] Li.Y, Okuno Y 2012 Prog. Photovolt: Res. Appl. 10 1002
[16] Lin H Y, Yang K 2012 Opt. Express 20 104
Catalog
Metrics
- Abstract views: 6479
- PDF Downloads: 1418
- Cited By: 0