-
The properties of boron doped ZnO (BZO) films are investigated by the pulsed DC magnetron sputtering technique and the plane wave pseudo-potential method based on the density-functional theory. Highly conductive and transparent BZO thin films are prepared using a B2O3:ZnO ceramic target. The effects of the substrate temperature on the structureand electrical and optical properties are systematically investigated. The results show that by increasing the substrate temperature appropriately, the crystallinity, grain size, and carrier mobility of BZO film are improved, and the resistivity is reduced. BZO films of low resistivity (7.03×10-4 Ω·cm) and high transmittance (89%) from 400–1100 nm are achieved at an optimal substrate temperature of 200 ℃. The theoretical results show that B is doped in ZnO mainly in three forms, i.e., in the forms of substitutional BZn atoms, octahedral interstitial site (BIO), and tetrahedral interstitial site (BIT). Among them the formation energy of BZn defect is lowest, and its concentration may be the highest in all the sample concentrations. After incorporation of B, the Fermi level goes through the conduction band. The sample shows a typical n-type metallic characteristic and the optical band gap increases significantly. The carriers originate from the orbits of B 2p, O 2p and Zn 4s.
-
Keywords:
- BZO film /
- first principles calculations /
- magnetron sputtering /
- solar cells
[1] Minami T 2005 Semicond. Sci. Technol. 20 S35
[2] Hpkes J, Owen J I, Pust S E, Bunte E 2012 Chem. Phys. Chem. 13 66
[3] Wang Y F, Zhang X D, Bai L S, Huang Q, Wei C C, Zhao Y 2012 Appl. Phys. Lett. 100 263508
[4] Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371
[5] Fäy S, Feitknecht L, Schlchter R, Kroll U, Vallat-Sauvain E, Shah A 2006 Sol. Energy Mater. Sol. Cells 90 2960
[6] Faÿ S, Steinhauser J, Nicolay S, Ballif C 2010 Thin Solid Films 518 2961
[7] WangY, Gu Y S, Peng S, Ding W Y, H L Wang, Chai W P 2011 Appl. Surf. Sci. 257 8044
[8] Palacios P, Sánchez K, Wahnón P 2009 Thin Solid Films 517 2448
[9] Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]
[10] Liu J J 2010 Acta Phys. Sin. 59 6446 (in Chinese) [刘建军 2010 59 6446]
[11] Özgr , Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, AVrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301
[12] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[13] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[14] Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048
[15] Vanderbilt D 1990 Phys. Rev. B 41 7892
[16] Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231
[17] Lin S S, Huang J L, Šajgalik P 2005 Surf. Coat. Tech. 190 39
[18] Singh S, Srinivasa R S, Major S S 2007 Thin Solid Films 515 8718
[19] Kim K H, Park K C, Ma D Y 1997 J. Appl. Phys. 81 7764
[20] Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432
[21] Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 61 137801]
[22] Wang F G, Lv M S, Pang Z Y, Yang T L, Dai Y, Han S H 2008 Appl. Surf. Sci. 254 6983
[23] Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 62 047101]
[24] Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Opt. Sin. 29 1025 (in Chinese) [张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 1025]
-
[1] Minami T 2005 Semicond. Sci. Technol. 20 S35
[2] Hpkes J, Owen J I, Pust S E, Bunte E 2012 Chem. Phys. Chem. 13 66
[3] Wang Y F, Zhang X D, Bai L S, Huang Q, Wei C C, Zhao Y 2012 Appl. Phys. Lett. 100 263508
[4] Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371
[5] Fäy S, Feitknecht L, Schlchter R, Kroll U, Vallat-Sauvain E, Shah A 2006 Sol. Energy Mater. Sol. Cells 90 2960
[6] Faÿ S, Steinhauser J, Nicolay S, Ballif C 2010 Thin Solid Films 518 2961
[7] WangY, Gu Y S, Peng S, Ding W Y, H L Wang, Chai W P 2011 Appl. Surf. Sci. 257 8044
[8] Palacios P, Sánchez K, Wahnón P 2009 Thin Solid Films 517 2448
[9] Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]
[10] Liu J J 2010 Acta Phys. Sin. 59 6446 (in Chinese) [刘建军 2010 59 6446]
[11] Özgr , Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, AVrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301
[12] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[13] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[14] Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048
[15] Vanderbilt D 1990 Phys. Rev. B 41 7892
[16] Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231
[17] Lin S S, Huang J L, Šajgalik P 2005 Surf. Coat. Tech. 190 39
[18] Singh S, Srinivasa R S, Major S S 2007 Thin Solid Films 515 8718
[19] Kim K H, Park K C, Ma D Y 1997 J. Appl. Phys. 81 7764
[20] Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432
[21] Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 61 137801]
[22] Wang F G, Lv M S, Pang Z Y, Yang T L, Dai Y, Han S H 2008 Appl. Surf. Sci. 254 6983
[23] Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 62 047101]
[24] Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Opt. Sin. 29 1025 (in Chinese) [张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 1025]
Catalog
Metrics
- Abstract views: 6494
- PDF Downloads: 1248
- Cited By: 0