-
采用改进后的顶部籽晶熔渗生长(M-TSIG)工艺,通过在固相先驱粉体中掺杂不同含量的BaO来有效地抑制GdBCO样品生长过程中出现的Gd/Ba替换现象,从而成功地制备出了一系列单畴GdBCO超导块材,并且对样品的宏观形貌、磁悬浮力、捕获磁通密度及临界温度等超导性能进行了研究.结果表明,随着BaO掺杂量的增加,样品的熔化温度(Tm)及包晶反应温度(Tp)均出现逐渐降低的趋势;同时,当样品中BaO的添加量在2 wt%4 wt%时,可以在一定的程度上有效提高GdBCO样品的磁悬浮力、捕获磁通密度及临界温度等超导性能.
-
关键词:
- 单畴GdBCO超导块材 /
- 磁悬浮力 /
- 捕获磁通密度 /
- 临界温度
In this work, a series of single domain GdBCO bulk superconductors with different ratios of BaO addition in the solid phase pellet, is successfully fabricated to inhibit the Gd/Ba substitution in the growth process by the modified top seeded infiltration growth (M-TSIG) technique. The reaction of the precursor powders, the growth morphology, the magnetic levitation force (F), the trapped magnetic flux (Btr) and critical temperature (Tc) of the single domain GdBCO bulk superconductors are investigated in detail. First, the differential thermal analysis is performed on the precursor powders of 10 mg solid phase pellet (containing various amounts of BaO) and 15 mg liquid phase pellet in order to investigate the melting temperature (Tm) and the peritectic temperature (Tp) of the GdBCO superconductor system. The results show that the melting point of the precursor powder decreases by nearly 8℃ as the BaO composition increases from 0 wt% to 4 wt%, which leads to Tp decreasing with BaO content increasing. Second, the top view morphologies of the GdBCO samples are also discussed. All of the samples exhibit clear, fourfold growth sector boundaries on their top surfaces, and spontaneous satellite grains are observed in none of these samples. It can be seen that the different ratio of BaO addition cannot affect the growth morphology of the single domain GdBCO bulk superconductor. And thirdly, the levitation force and trapped field of each of the samples are measured under a zero field cooling state at 77 K by the three-dimensional magnetic force and field device. The values of the levitation force for the samples are slightly different for different ratios of BaO additions. The largest levitation force is 35 N, which is obtained in the sample with 2.5 wt%, and the smallest one is 28 N in the sample with 1 wt% BaO addition. And also, the trapped field of the sample can be attributed simply to the variation in the pinning strength. It can be obviously seen that these values fluctuate between 0.28 T and 0.32 T for these samples. Finally, the critical temperatures of the samples are measured by the vibrating sample magnetometer with an external magnetic field of 0.01 T. The samples exhibit outstanding features of high Tc, which indicates that these samples are of good quality and the Gd/Ba substitution is inhibited by the BaO addition. The above results show that the values of melting temperature (Tm) and peritectic temperature (Tp) of the samples have the decrease tendencies, and the superconducting properties of the samples (such as F, Btr and Tc) can be improved to a certain extent when the amount of BaO added ranges from 2 wt% to 4 wt%, which are very helpful in inhibiting the Gd/Ba substitution and fabricating the high-quality single domain GdBCO bulk superconductors.-
Keywords:
- singe domain GdBCO bulk superconductor /
- levitation force /
- trapped flux field /
- critical temperature
[1] Durrell J H, Dennis A R, Jaroszynski J, Ainslie M D, Palmer K G, Shi Y H, Campbell A M, Hull J, Strasik M, Hellstrom E E 2014Supercond. Sci. Technol. 27 082001
[2] Muralidhar M, Tomita M, Suzuki K, Jirsa M, Fukumoto Y, Ishihara A 2010Supercond. Sci. Technol. 23 045033
[3] Shi Y, Babu N H, Iida K, Yeoh W K, Dennis A R, Pathak S K, Cardwell D A 2010Physica C 470 685
[4] Cheng L, Li T Y, Yan S B, Sun L J, Yao X, Puzmiak R 2011J. Am. Cer. Soc. 94 3139
[5] Nariki S, Sakai N, Murakami M 2002Supercond. Sci. Technol. 15 648
[6] Nitadori T, Ichiki T, Misono M 1988Bull. Chem. Soc. Jpn. 61 621
[7] Nariki S, Sakai N, Murakami M 2005Supercond. Sci. Technol. 18 S126
[8] Xu K, Zhou D F, Li B Z, Hara S, Deng Z G, Izumi M 2015Physica C 510 54
[9] Miyachi K, Sudoh K, Ichino Y, Yoshida Y, Takai Y 2003Physica C 392 1261
[10] Dai J, Zhao Z, Xiong J 2003Supercond. Sci. Technol. 16 815
[11] Taskin A, Lavrov A, Ando Y 2006Phy. Rev. B 73 121101
[12] Tsvetkov D, Sereda V, Zuev A Y 2010Solid State Ionics 180 1620
[13] Wu H, Kramer M J, Dennis K W, Mccallum R W 1997IEEE Trans. Appl. Supercon. 7 1731
[14] Li B, Zhou D, Xu K, Tsuzuki K, Zhang J C, Izumi M 2014Physica C 496 28
[15] Shi Y, Babu N, Iida K, Cardwell D A 2008Physica C 468 1408
[16] Li B, Xu K, Hara S, Zhou D F, Zhang Y F, Izumi M 2012Physica C 475 51
[17] Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Physica C 426 613
[18] Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Supercond. Sci. Technol. 18 229
[19] Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Physica C 417 77
[20] Shi Y, Babu N H, Iida K, Cardwell D A 2007IEEE Trans. Appl. Supercon. 17 2984
[21] Cheng X F 2010Ph. D. Dissertation (Xi'an:Shaanxi Normal University) (in Chinese)[程晓芳2010博士学位论文(西安:陕西师范大学)]
[22] Cheng X F, Yang W M, Li G Z, Fan J, Guo X D, Zhu W J 2010Chin. J. L. Temp. Phys. 2 150(in Chinese)[程晓芳, 杨万民, 李国政, 樊静, 郭晓丹, 朱维君2010低温 2 150]
[23] Li G Z, Yang W M, Liang W, Li J W 2011Mater. Lett. 65 304
[24] Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013Physica C 492 129
[25] Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P 2006Physica C 347 445
[26] Shiohara Y, Endo A 1997A Mater. Sci. Eng. R:Reports 19 1
[27] Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015Acta Phys. Sin. 64 077401(in Chinese)[郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强2015 64 077401]
[28] Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015Supercond. Sci. Technol. 28 035004
-
[1] Durrell J H, Dennis A R, Jaroszynski J, Ainslie M D, Palmer K G, Shi Y H, Campbell A M, Hull J, Strasik M, Hellstrom E E 2014Supercond. Sci. Technol. 27 082001
[2] Muralidhar M, Tomita M, Suzuki K, Jirsa M, Fukumoto Y, Ishihara A 2010Supercond. Sci. Technol. 23 045033
[3] Shi Y, Babu N H, Iida K, Yeoh W K, Dennis A R, Pathak S K, Cardwell D A 2010Physica C 470 685
[4] Cheng L, Li T Y, Yan S B, Sun L J, Yao X, Puzmiak R 2011J. Am. Cer. Soc. 94 3139
[5] Nariki S, Sakai N, Murakami M 2002Supercond. Sci. Technol. 15 648
[6] Nitadori T, Ichiki T, Misono M 1988Bull. Chem. Soc. Jpn. 61 621
[7] Nariki S, Sakai N, Murakami M 2005Supercond. Sci. Technol. 18 S126
[8] Xu K, Zhou D F, Li B Z, Hara S, Deng Z G, Izumi M 2015Physica C 510 54
[9] Miyachi K, Sudoh K, Ichino Y, Yoshida Y, Takai Y 2003Physica C 392 1261
[10] Dai J, Zhao Z, Xiong J 2003Supercond. Sci. Technol. 16 815
[11] Taskin A, Lavrov A, Ando Y 2006Phy. Rev. B 73 121101
[12] Tsvetkov D, Sereda V, Zuev A Y 2010Solid State Ionics 180 1620
[13] Wu H, Kramer M J, Dennis K W, Mccallum R W 1997IEEE Trans. Appl. Supercon. 7 1731
[14] Li B, Zhou D, Xu K, Tsuzuki K, Zhang J C, Izumi M 2014Physica C 496 28
[15] Shi Y, Babu N, Iida K, Cardwell D A 2008Physica C 468 1408
[16] Li B, Xu K, Hara S, Zhou D F, Zhang Y F, Izumi M 2012Physica C 475 51
[17] Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Physica C 426 613
[18] Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Supercond. Sci. Technol. 18 229
[19] Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Physica C 417 77
[20] Shi Y, Babu N H, Iida K, Cardwell D A 2007IEEE Trans. Appl. Supercon. 17 2984
[21] Cheng X F 2010Ph. D. Dissertation (Xi'an:Shaanxi Normal University) (in Chinese)[程晓芳2010博士学位论文(西安:陕西师范大学)]
[22] Cheng X F, Yang W M, Li G Z, Fan J, Guo X D, Zhu W J 2010Chin. J. L. Temp. Phys. 2 150(in Chinese)[程晓芳, 杨万民, 李国政, 樊静, 郭晓丹, 朱维君2010低温 2 150]
[23] Li G Z, Yang W M, Liang W, Li J W 2011Mater. Lett. 65 304
[24] Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013Physica C 492 129
[25] Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P 2006Physica C 347 445
[26] Shiohara Y, Endo A 1997A Mater. Sci. Eng. R:Reports 19 1
[27] Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015Acta Phys. Sin. 64 077401(in Chinese)[郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强2015 64 077401]
[28] Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015Supercond. Sci. Technol. 28 035004
计量
- 文章访问数: 5800
- PDF下载量: 185
- 被引次数: 0