Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical investigation of bubble nucleation process using the lattice Boltzmann method

Zeng Jian-Bang Li Long-Jian Jiang Fang-Ming

Citation:

Numerical investigation of bubble nucleation process using the lattice Boltzmann method

Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the state of metastable equilibrium and the state of unstable equilibrium of water at a certain temperature are explored using an exact difference lattice Boltzmann model and the conditions of bubble (droplet) formation are investigated in the isothermal phase transition processes. From these simulation results, it is found that the model predictions are in good agreement with analytical results. Based on these works, a new model, which is based on exact difference lattice Boltzmann model and extended with an energy transfer equation to model heat transfer, is proposed to describe liquid-vapor phase transition process. The effects of the wall-fluid interaction strength on the bubble nucleation process in a pit are investigated using this new heterogeneous phase transition model. Simulation results accurately reproduce the characteristics of three stages of the bubble nucleation process. The changes of the contact angle, curvature radius, and volume with the bubble nucleation process are explored, and the relationship curve between curvature and bubble volume from the simulations is in qualitative agreement with the previous results.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51206171), the National Natural Science Foundation of China (Grant No. 51076172), the Director Innovation Foundation of Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (Grant No. y207r31001), and the CAS "100 Talents" Plan.
    [1]

    Xu J Y 2011 Boiling Heat Transfer and gas-liquid two phase flow (Beijing: Atomic Energy Press) p211 (in Chinese) [徐济鋆 2001 沸腾传热和气液两相流 (北京: 原子能出版社) 第211页]

    [2]

    Bestion D, Anglart H, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [3]

    Xin M D 1987 Boiling Heat Transfer and Heat Transfer enhancement (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆: 重庆大学出版社) 第55页]

    [4]

    Clark H B, Strenge P S, Westwater J W 1959 Chem. Eng. Progress Symp. 55 103

    [5]

    Bankoff S G 1958 AICHE J. 4 24

    [6]

    Griffith P, Wallis J D 1960 Chem. Eng. Prog. Symp. 30 7673

    [7]

    Sato T, Matsumura H 1964 Bulletin of JSME 7 392

    [8]

    Davis E J, Anderson G H 1966 AICHE Journa 12 774

    [9]

    Lorenz J J, Mikic B B, Rohsenow, Warren M 1971 M.I.T Engineering Projects Laboratory 14091243 29

    [10]

    Wang C H, Dhir V K 1993 J. Heat Transfer 115 659

    [11]

    Mikic B B, Rohsenow W M 1969 J. Heat Transfer 91 245

    [12]

    Judd R L, Hwang K S 1976 Heat Transfer 88 623

    [13]

    Dhir V K 1991 Int. J. Heat Fluid Flow 12 290

    [14]

    Kenning D B R, Yan Y Y 1996 Int. J. Heat Mass Transfer 39 3117

    [15]

    Zhang L, Shoji M 2003 Int. J. Heat Mass Transfer 46 513

    [16]

    Guo Z L, Zheng C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p76 (In Chinese) [郭照立, 郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [17]

    Wang W X, Shi J, Qiu B, Li H B 2010 Acta Phys. Sin. 59 8371 (in Chinese) [王文霞, 施娟, 邱冰, 李华兵 2010 59 8371]

    [18]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 59 2595]

    [19]

    Zhang X M, Zhou C Y, Islam S, Liu J Q 2009 Acta Phys. Sin. 58 8406 (in Chinese) [张新明, 周超英, Islam Shams, 刘家琦 2009 58 8406]

    [20]

    Zeng J B, Li L J, Liao Q, Huang Y P, Pan L M 2010 Chin. Sci Bull. 55 3267

    [21]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [22]

    Tentner A, Chen H D, Zhang R Y 2006 Physica A 362 98

    [23]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [24]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [25]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [26]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [27]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci Bull. 54 1

    [28]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 59 178]

    [29]

    Zeng J B, Li L J, Jiang F M 2011 Acta Phys. Sin. 60 066401 (in Chinese) [曾建邦, 李隆键, 蒋方明 2011 60 066401]

    [30]

    Kupershtokh A L 2004 Proceedings of the 5th International Electrostatique Workshop August 30-31, 2004 Poitiers-France 241

    [31]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [32]

    Yuan P, Schaefer L 2006 Phys. Fluids 18 1

    [33]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [34]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭, 陶文铨 1998 传热学 (北京: 高等出版社) 第218页]

    [35]

    Shen W D, Jiang Z M, Tong J G 2001 Higher Engineering Theormodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道, 蒋智敏, 童钧耕 2001 高等工程热力学 (北京: 高等教育出版社) 第413页]

    [36]

    Yuan P 2005 Ph.D. Dissertation (Pittsburg: University of Pittsburg) p56

  • [1]

    Xu J Y 2011 Boiling Heat Transfer and gas-liquid two phase flow (Beijing: Atomic Energy Press) p211 (in Chinese) [徐济鋆 2001 沸腾传热和气液两相流 (北京: 原子能出版社) 第211页]

    [2]

    Bestion D, Anglart H, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [3]

    Xin M D 1987 Boiling Heat Transfer and Heat Transfer enhancement (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆: 重庆大学出版社) 第55页]

    [4]

    Clark H B, Strenge P S, Westwater J W 1959 Chem. Eng. Progress Symp. 55 103

    [5]

    Bankoff S G 1958 AICHE J. 4 24

    [6]

    Griffith P, Wallis J D 1960 Chem. Eng. Prog. Symp. 30 7673

    [7]

    Sato T, Matsumura H 1964 Bulletin of JSME 7 392

    [8]

    Davis E J, Anderson G H 1966 AICHE Journa 12 774

    [9]

    Lorenz J J, Mikic B B, Rohsenow, Warren M 1971 M.I.T Engineering Projects Laboratory 14091243 29

    [10]

    Wang C H, Dhir V K 1993 J. Heat Transfer 115 659

    [11]

    Mikic B B, Rohsenow W M 1969 J. Heat Transfer 91 245

    [12]

    Judd R L, Hwang K S 1976 Heat Transfer 88 623

    [13]

    Dhir V K 1991 Int. J. Heat Fluid Flow 12 290

    [14]

    Kenning D B R, Yan Y Y 1996 Int. J. Heat Mass Transfer 39 3117

    [15]

    Zhang L, Shoji M 2003 Int. J. Heat Mass Transfer 46 513

    [16]

    Guo Z L, Zheng C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p76 (In Chinese) [郭照立, 郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [17]

    Wang W X, Shi J, Qiu B, Li H B 2010 Acta Phys. Sin. 59 8371 (in Chinese) [王文霞, 施娟, 邱冰, 李华兵 2010 59 8371]

    [18]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 59 2595]

    [19]

    Zhang X M, Zhou C Y, Islam S, Liu J Q 2009 Acta Phys. Sin. 58 8406 (in Chinese) [张新明, 周超英, Islam Shams, 刘家琦 2009 58 8406]

    [20]

    Zeng J B, Li L J, Liao Q, Huang Y P, Pan L M 2010 Chin. Sci Bull. 55 3267

    [21]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [22]

    Tentner A, Chen H D, Zhang R Y 2006 Physica A 362 98

    [23]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [24]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [25]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [26]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [27]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci Bull. 54 1

    [28]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 59 178]

    [29]

    Zeng J B, Li L J, Jiang F M 2011 Acta Phys. Sin. 60 066401 (in Chinese) [曾建邦, 李隆键, 蒋方明 2011 60 066401]

    [30]

    Kupershtokh A L 2004 Proceedings of the 5th International Electrostatique Workshop August 30-31, 2004 Poitiers-France 241

    [31]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [32]

    Yuan P, Schaefer L 2006 Phys. Fluids 18 1

    [33]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [34]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭, 陶文铨 1998 传热学 (北京: 高等出版社) 第218页]

    [35]

    Shen W D, Jiang Z M, Tong J G 2001 Higher Engineering Theormodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道, 蒋智敏, 童钧耕 2001 高等工程热力学 (北京: 高等教育出版社) 第413页]

    [36]

    Yuan P 2005 Ph.D. Dissertation (Pittsburg: University of Pittsburg) p56

  • [1] Xu Xin-Meng, Lou Qin. Lattice Boltzmann method for studying dynamics of single rising bubble in shear-thickening power-law fluids. Acta Physica Sinica, 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [2] Zhang Xiao-Lin, Huang Jun-Jie. Study on wetting and spreading behaviors of compound droplets on wedge by lattice Boltzmann method. Acta Physica Sinica, 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [3] Liu Gao-Jie, Shao Zi-Yu, Lou Qin. A lattice Boltzmann study of miscible displacement containing dissolution reaction in porous medium. Acta Physica Sinica, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [4] Lattice Boltzmann Simulation on Two Dimensional Vapour Bubble Ripening. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20212183
    [5] Chen Xiao-Peng, Feng Jun-Peng, Hu Hai-Bao, Du Peng, Wang Ti-Kang. Lattice Boltzmann method based simulation of two dimensional bubble group ripening process. Acta Physica Sinica, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [6] A lattice Boltzmann study on miscible displacements with dissolution in porous media. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211851
    [7] Yin Ling-Kang, Xu Shun, Seongmin Jeong, Yongseok Jho, Wang Jian-Jun, Zhou Xin. Vapor-liquid coexisting morphology of all-atom water model through generalized isothermal isobaric ensemble molecular dynamics simulation. Acta Physica Sinica, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [8] Zang Chen-Qiang, Lou Qin. Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel. Acta Physica Sinica, 2017, 66(13): 134701. doi: 10.7498/aps.66.134701
    [9] Ye Xue-Min, Li Yong-Kang, Li Chun-Xi. Influence of equilibrium contact angle on spreading dynamics of a heated droplet on a horizontal plate. Acta Physica Sinica, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [10] Liang Hong, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel. Acta Physica Sinica, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [11] Huang Hu, Hong Ning, Liang Hong, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of the droplet impact onto liquid film. Acta Physica Sinica, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [12] Zhang Ting, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of dissolution and precipitation in porous media. Acta Physica Sinica, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [13] Ren Sheng, Zhang Jia-Zhong, Zhang Ya-Miao, Wei Ding. Phase transition in liquid due to zero-net-mass-flux jet and its numerical simulation using lattice Boltzmann method. Acta Physica Sinica, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [14] Xie Wen-Jun, Teng Peng-Fei. Study of acoustic levitation by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [15] Jing Wei-Xuan, Wang Bing, Niu Ling-Ling, Qi Han, Jiang Zhuang-De, Chen Lu-Jia, Zhou Fan. Relationships between synthesizing parameters, morphology, and contact angles of ZnO nanowire films. Acta Physica Sinica, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [16] Ge Song, Chen Min. A molecular dynamics simulation on the relationship between contact angle and solid-liquid interfacial thermal resistance. Acta Physica Sinica, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [17] Liu Qiu-Zu, Kou Zi-Ming, Han Zhen-Nan, Gao Gui-Jun. Dynamic process simulation of droplet spreading on solid surface by lattic Boltzmann method. Acta Physica Sinica, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [18] Jiang Fang-Ming, Liao Quan, Zeng Jian-Bang, Li Long-Jian. Simulation of bubble growth process in pool boilingusing lattice Boltzmann method. Acta Physica Sinica, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [19] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [20] Zeng Jian-Bang, Li Long-Jian, Liao Quan, Chen Qing-Hua, Cui Wen-Zhi, Pan Liang-Ming. Application of lattice Boltzmann method to phase transition process. Acta Physica Sinica, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
Metrics
  • Abstract views:  7183
  • PDF Downloads:  955
  • Cited By: 0
Publishing process
  • Received Date:  19 March 2013
  • Accepted Date:  14 May 2013
  • Published Online:  05 September 2013

/

返回文章
返回
Baidu
map