Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel

Zang Chen-Qiang Lou Qin

Citation:

Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel

Zang Chen-Qiang, Lou Qin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The immiscible displacement process in micro-channel, which widely existes in daily life and industrial production, is an important research subject. This subject is a typical contact line problem involving complicated fluid-fluid interactions and fluid-solid interactions which have attracted the interest of many scholars. Although the immiscible displacement in micro-channels has been studied by some researches, the problem is still not fully understood because the mechanism of the immiscible displacement is very complex. In order to further explain the physical mechanism of immiscible displacement process in micro-channels, detailed numerical simulations are carried out in a complex micro-channel containing a semicircular cavity and a semicircular by bulge using an improved pseudo-potential lattice Boltzmann method (LBM). This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBM. Initially, the cavity is filled with the liquid and the rest of the area is filled with its vapour. The semicircular bulge represents the roughness of the micro-channel. The approach is first validated by the Laplace law. The results show that the numerical results are in good agreement with the theoretical predictions. Then the model is employed to study the immiscible displacement process in the micro-channel. The effects of the surface wettability, the surface roughness, the viscosity ratio between the liquid phase and the gas phase, and the distance between the semicircular cavity and the semicircular bulge are studied. The simulation results show that the influence of the surface wettability on the displacement process is a decisive factor compared with other factors. With the increase of the contact angle, the displacement efficiency increases and the displacement time decreases. When the contact〉is larger than a certain value, all of the liquid can be displaced from the cavity. At that time, the displacement efficiency is equal to 1. The above results are consistent with the theoretical prediction that with the increase of the contact angle, the liquid is easily driven out of the cavity because the adhesion force of the liquid in the cavity decreases. On the other hand, the influence of the surface roughness on the displacement process is more complex. The displacement efficiency increases with the radius of the semicircle bulge increasing in a certain range. When the radius is larger than a certain value, the liquid cannot be ejected from the cavity due to the velocity around the cavity is too small. Furthermore, the liquid cannot be displaced from the cavity at a small viscosity ratio. As the viscosity ratio increases, the displacement efficiency increases and the displacement time decreases. As for the distance between the semicircular bulge and the semicircular cavity, it promotes the displacement process at an early stage. When the distance exceeds a certain value, it has little effect on the displacement process.
      Corresponding author: Lou Qin, louqin560916@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.51406120).
    [1]

    Tecklenburg J, Neuweiler I, Dentz M, Carrera J, Geiger S, Abramowski C, Silva O 2013 Adv. Water Res. 62 475

    [2]

    Zhu X, Sui P C, Djilali N 2008 J. Power Sources 181 101

    [3]

    Yang D, Krasowska M, Priest C, Ralston J 2014 Phys. Chem. Chem. Phys. 16 24473

    [4]

    Islam S F, Sundara R V, Whitehouse S, Althaus T O, Palzer S, Hounslow M J, Salman A D 2016 Chem. Eng. Res. Des. 110 160

    [5]

    Li W Z, Sun H M, Dong B 2013 Chin. J. Computat. Mech. 1 106 (in Chinese)[李维仲, 孙红梅, 董波 2013 计算力学学报 1 106]

    [6]

    Primkulov B K, Lin F, Xu Z 2016 Colloids Surf. A:Physicochem. Eng. Aspects 497 336

    [7]

    Koplik J, Banavar J R, Willemsen J F 1988 Phys. Rev. Lett. 60 1282

    [8]

    Zhou G, Chen Z, Ge W, Li J 2010 Chem. Eng. Sci. 65 3363

    [9]

    Jamaloei B Y, Kharrat R 2010 Transp. Porous Med. 81 1

    [10]

    Pramanik S, Mishra M 2016 Phys. Rev. E 94 043106

    [11]

    Yang K, Guo Z 2016 Comput. Fluids 124 157

    [12]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

    [13]

    Kang Q, Zhang D, Chen S 2005 J. Fluid Mech. 545 41

    [14]

    Kang Q, Zhang D, Chen S 2004 Adv. Water Res. 27 13

    [15]

    Huang H, Huang J J, Lu X Y 2014 Comput. Fluids 93 164

    [16]

    Dong B, Yan Y Y, Li W, Song Y 2010 Comput. Fluids 39 768

    [17]

    Dong B, Yan Y Y, Li W Z 2011 Transp. Porous. Med. 88 293

    [18]

    Li W Z, Dong B, Song Y C 2012 J. Dalian Univ. Technol. 3 343 (in Chinese)[李维仲, 董波, 宋永臣 2012 大连理工大学学报 3 343]

    [19]

    Li J, Song Y C, Li W Z 2009 J. Thermal Sci. Technol. 4 284 (in Chinese)[李娟, 宋永臣, 李维仲 2009 热科学与技术 4 284]

    [20]

    Peng B L, Xu W, Wen R F, Lan Z, Bai T, Ma X H 2015 J. Eng. Thermophys. 4 820 (in Chinese)[彭本利, 徐威, 温荣福, 兰忠, 白涛, 马学虎 2015 工程热 4 820]

    [21]

    Liang H, Chai Z, Shi B, Guo Z, Li Q 2015 Int. J. Mod. Phys. C 26 1550074

    [22]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320

    [23]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [24]

    Shan X, Chen H 1994 Phys. Rev. E 49 2941

    [25]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830

    [26]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041

    [27]

    Luo L S 1998 Phys. Rev. Lett. 81 1618

    [28]

    He X, Chen S, Zhang R 1999 J. Comput. Phys. 152 642

    [29]

    Guo Z, Zhao T S 2005 Phys. Rev. E 71 026701

    [30]

    Yu Z, Fan L S 2009 J. Comput. Phys. 228 6456

    [31]

    Guo Z, Zheng C, Shi B 2002 Phys. Rev. E 65 046308

    [32]

    Martys N S, Chen H 1996 Phys. Rev. E 53 743

    [33]

    Zhang R, He X, Chen S 2000 Comput. Phys. Commun. 129 121

    [34]

    Fakhari A, Rahimian M H 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 3046

    [35]

    Zheng H W, Shu C, Chew Y T 2006 J. Comput. Phys. 218 353

    [36]

    Hao L, Cheng P 2000 J. Power Sources 190 435

    [37]

    Huang H, Lu X 2009 Phys. Fluids 21 092104

    [38]

    Li Q, Luo K H, Kang Q J, Chen Q 2014 Phys. Rev. E 90 053301

  • [1]

    Tecklenburg J, Neuweiler I, Dentz M, Carrera J, Geiger S, Abramowski C, Silva O 2013 Adv. Water Res. 62 475

    [2]

    Zhu X, Sui P C, Djilali N 2008 J. Power Sources 181 101

    [3]

    Yang D, Krasowska M, Priest C, Ralston J 2014 Phys. Chem. Chem. Phys. 16 24473

    [4]

    Islam S F, Sundara R V, Whitehouse S, Althaus T O, Palzer S, Hounslow M J, Salman A D 2016 Chem. Eng. Res. Des. 110 160

    [5]

    Li W Z, Sun H M, Dong B 2013 Chin. J. Computat. Mech. 1 106 (in Chinese)[李维仲, 孙红梅, 董波 2013 计算力学学报 1 106]

    [6]

    Primkulov B K, Lin F, Xu Z 2016 Colloids Surf. A:Physicochem. Eng. Aspects 497 336

    [7]

    Koplik J, Banavar J R, Willemsen J F 1988 Phys. Rev. Lett. 60 1282

    [8]

    Zhou G, Chen Z, Ge W, Li J 2010 Chem. Eng. Sci. 65 3363

    [9]

    Jamaloei B Y, Kharrat R 2010 Transp. Porous Med. 81 1

    [10]

    Pramanik S, Mishra M 2016 Phys. Rev. E 94 043106

    [11]

    Yang K, Guo Z 2016 Comput. Fluids 124 157

    [12]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

    [13]

    Kang Q, Zhang D, Chen S 2005 J. Fluid Mech. 545 41

    [14]

    Kang Q, Zhang D, Chen S 2004 Adv. Water Res. 27 13

    [15]

    Huang H, Huang J J, Lu X Y 2014 Comput. Fluids 93 164

    [16]

    Dong B, Yan Y Y, Li W, Song Y 2010 Comput. Fluids 39 768

    [17]

    Dong B, Yan Y Y, Li W Z 2011 Transp. Porous. Med. 88 293

    [18]

    Li W Z, Dong B, Song Y C 2012 J. Dalian Univ. Technol. 3 343 (in Chinese)[李维仲, 董波, 宋永臣 2012 大连理工大学学报 3 343]

    [19]

    Li J, Song Y C, Li W Z 2009 J. Thermal Sci. Technol. 4 284 (in Chinese)[李娟, 宋永臣, 李维仲 2009 热科学与技术 4 284]

    [20]

    Peng B L, Xu W, Wen R F, Lan Z, Bai T, Ma X H 2015 J. Eng. Thermophys. 4 820 (in Chinese)[彭本利, 徐威, 温荣福, 兰忠, 白涛, 马学虎 2015 工程热 4 820]

    [21]

    Liang H, Chai Z, Shi B, Guo Z, Li Q 2015 Int. J. Mod. Phys. C 26 1550074

    [22]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320

    [23]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [24]

    Shan X, Chen H 1994 Phys. Rev. E 49 2941

    [25]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830

    [26]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041

    [27]

    Luo L S 1998 Phys. Rev. Lett. 81 1618

    [28]

    He X, Chen S, Zhang R 1999 J. Comput. Phys. 152 642

    [29]

    Guo Z, Zhao T S 2005 Phys. Rev. E 71 026701

    [30]

    Yu Z, Fan L S 2009 J. Comput. Phys. 228 6456

    [31]

    Guo Z, Zheng C, Shi B 2002 Phys. Rev. E 65 046308

    [32]

    Martys N S, Chen H 1996 Phys. Rev. E 53 743

    [33]

    Zhang R, He X, Chen S 2000 Comput. Phys. Commun. 129 121

    [34]

    Fakhari A, Rahimian M H 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 3046

    [35]

    Zheng H W, Shu C, Chew Y T 2006 J. Comput. Phys. 218 353

    [36]

    Hao L, Cheng P 2000 J. Power Sources 190 435

    [37]

    Huang H, Lu X 2009 Phys. Fluids 21 092104

    [38]

    Li Q, Luo K H, Kang Q J, Chen Q 2014 Phys. Rev. E 90 053301

  • [1] Lai Yao-Yao, Chen Xin-Meng, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann method based feedback control approach for pinned spiral waves. Acta Physica Sinica, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] Liu Gao-Jie, Shao Zi-Yu, Lou Qin. A lattice Boltzmann study of miscible displacement containing dissolution reaction in porous medium. Acta Physica Sinica, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [3] Zhang Heng, Ren Feng, Hu Hai-Bao. Transitions of power-law fluids in two-dimensional lid-driven cavity flow using lattice Boltzmann method. Acta Physica Sinica, 2021, 70(18): 184703. doi: 10.7498/aps.70.20210451
    [4] A lattice Boltzmann study on miscible displacements with dissolution in porous media. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211851
    [5] Zhou Guang-Yu, Chen Li, Zhang Hong-Yan, Cui Hai-Hang. Research on diffusiophoresis of self-propulsion Janus particles based on lattice Boltzmann method. Acta Physica Sinica, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [6] Wang Zuo, Zhang Jia-Zhong, Wang Heng. Non-orthogonal multiple-relaxation-time lattice Boltzmann method for axisymmetric thermal flows. Acta Physica Sinica, 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [7] Zhang Ya, Pan Guang, Huang Qiao-Gao. Numerical investigation on drag reduction with hydrophobic surface by lattice Boltzmann method. Acta Physica Sinica, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [8] Liu Qiu-Zu, Kou Zi-Ming, Jia Yue-Mei, Wu Juan, Han Zhen-Nan, Zhang Qian-Qian. Wettability alteration simulation of modified hydrophobic solid surface by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [9] Huang Qiao-Gao, Pan Guang, Song Bao-Wei. Lattice Boltzmann simulation of slip flow and drag reduction characteristics of hydrophobic surfaces. Acta Physica Sinica, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [10] Ren Sheng, Zhang Jia-Zhong, Zhang Ya-Miao, Wei Ding. Phase transition in liquid due to zero-net-mass-flux jet and its numerical simulation using lattice Boltzmann method. Acta Physica Sinica, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [11] Xie Wen-Jun, Teng Peng-Fei. Study of acoustic levitation by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [12] Shi Dong-Yan, Wang Zhi-Kai, Zhang A-Man. A novel lattice Boltzmann method for dealing with arbitrarily complex fluid-solid boundaries. Acta Physica Sinica, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] Liu Qiu-Zu, Kou Zi-Ming, Han Zhen-Nan, Gao Gui-Jun. Dynamic process simulation of droplet spreading on solid surface by lattic Boltzmann method. Acta Physica Sinica, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [14] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [15] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [16] Jiang Fang-Ming, Liao Quan, Zeng Jian-Bang, Li Long-Jian. Simulation of bubble growth process in pool boilingusing lattice Boltzmann method. Acta Physica Sinica, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [17] Zeng Jian-Bang, Li Long-Jian, Liao Quan, Chen Qing-Hua, Cui Wen-Zhi, Pan Liang-Ming. Application of lattice Boltzmann method to phase transition process. Acta Physica Sinica, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [18] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [19] Lü XIAO-YANG, LI HUA-BING. SIMULATION OF THERMAL VISCOUS CAVITY FLOW IN HIGH REYNOLD NUMBER BY THE LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [20] LI HUA-BING, HUANG PING-HUA, LIU MU-REN, KONG LING-JIANG. SIMULATION OF THE MKDV EQUATION WITH LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
Metrics
  • Abstract views:  6409
  • PDF Downloads:  300
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2017
  • Accepted Date:  04 May 2017
  • Published Online:  05 July 2017

/

返回文章
返回
Baidu
map