-
In order to apply carbon nanotube field effect transistor (CNTFET) to circuit simulation, maintaining an acceptable accuracy while minimizing computation time is a major problem. To establish a simple and high accuracy CNTFET model in HSPICE, based on the semi-classical model of CNTFET, the relationship between self-consistent electric potential and carrier density is analyzed, linear approximation is used for curve fitting, and explicit expression of self-consistent electric potential is deduced, so that the iterative solution of an integral equation is avoided. Then the CNTFET model in HSPICE is built. Simulation demonstrates that the proposed model can maintain high accuracy, and the logic functions can be realized in corresponding logic gates built with the proposed model, while the computation time is significantly reduced.
-
Keywords:
- carbon nanotube field effect transistors /
- semi-classical model /
- linear approximation fitting /
- HSPICE simulation
[1] Zhou H L, Chi Y Q, Zhang M X, Fang L 2010 Acta Phys. Sin. 59 8104 (in Chinese) [周海亮, 池雅庆, 张民选, 方粮 2010 59 8104]
[2] Raychowdhury A, Roy K 2006 IEEE T. Comput. 25 58
[3] Zhao P, Guo J 2009 J. Appl. Phys. 105 034503
[4] Zhou X J, Park J Y, Huang S M, Liu J, McEuen P L 2005 Phys. Rev. Lett. 95 146805
[5] Fregonese S, Goguet J, Maneux C, Zimmer T 2009 IEEE T. Electron. Dev. 56 1184
[6] Alam K 2006 Ph. D. Dissertation (California: University of California, Riverside)
[7] Guo J, Datta S,Lundstrom M 2004 IEEE T. Electron. Dev. 51 172
[8] Neophytou N, Ahmed S, Klimeck G 2007 J. Comput. Elect. 6 317
[9] Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503
[10] Raychowdhury A, Mukhopadhyay S, Roy K 2004 IEEE T. Comput. 23 1411
[11] Liu X H, Zhang J S, Wang J W, Ao Q, Wang Z, Ma Y, Li X, Wang Z S, Wang R Y 2002 Acta Phys. Sin. 51 384 (in Chinese) [刘兴辉, 张俊松, 王绩伟, 敖强, 王震, 马迎, 李新, 王振世, 王瑞玉 2002 51 384]
[12] Deng J, Wong H S P 2007 IEEE T. Electron. Dev. 54 3186
[13] Fregonese S, Cazin d'Honincthun H, Goguet J, Maneux C, Zimmer T, Bourgoin J P, Dollfus P, Galdin-Retailleau S 2008 IEEE T. Electron. Dev. 55 1317
[14] Zhao X H, CAI L, Zhang P 2012 Jisuan Wuli 29 575
[15] Rahman A, Guo J, Datta S, Lundstrom M 2003 IEEE T Electron Dev. 50 1853
[16] Fettoy 2.0 Rahman A, Wang J, Guo J https://www.nanohub.org/resources/220 [2006-2]
[17] Southampton CNT resources Zhou D F, Kazmierski T J, Hashimi B M A, Ashburn P https://www.cnt.ecs.soton.ac.uk
-
[1] Zhou H L, Chi Y Q, Zhang M X, Fang L 2010 Acta Phys. Sin. 59 8104 (in Chinese) [周海亮, 池雅庆, 张民选, 方粮 2010 59 8104]
[2] Raychowdhury A, Roy K 2006 IEEE T. Comput. 25 58
[3] Zhao P, Guo J 2009 J. Appl. Phys. 105 034503
[4] Zhou X J, Park J Y, Huang S M, Liu J, McEuen P L 2005 Phys. Rev. Lett. 95 146805
[5] Fregonese S, Goguet J, Maneux C, Zimmer T 2009 IEEE T. Electron. Dev. 56 1184
[6] Alam K 2006 Ph. D. Dissertation (California: University of California, Riverside)
[7] Guo J, Datta S,Lundstrom M 2004 IEEE T. Electron. Dev. 51 172
[8] Neophytou N, Ahmed S, Klimeck G 2007 J. Comput. Elect. 6 317
[9] Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503
[10] Raychowdhury A, Mukhopadhyay S, Roy K 2004 IEEE T. Comput. 23 1411
[11] Liu X H, Zhang J S, Wang J W, Ao Q, Wang Z, Ma Y, Li X, Wang Z S, Wang R Y 2002 Acta Phys. Sin. 51 384 (in Chinese) [刘兴辉, 张俊松, 王绩伟, 敖强, 王震, 马迎, 李新, 王振世, 王瑞玉 2002 51 384]
[12] Deng J, Wong H S P 2007 IEEE T. Electron. Dev. 54 3186
[13] Fregonese S, Cazin d'Honincthun H, Goguet J, Maneux C, Zimmer T, Bourgoin J P, Dollfus P, Galdin-Retailleau S 2008 IEEE T. Electron. Dev. 55 1317
[14] Zhao X H, CAI L, Zhang P 2012 Jisuan Wuli 29 575
[15] Rahman A, Guo J, Datta S, Lundstrom M 2003 IEEE T Electron Dev. 50 1853
[16] Fettoy 2.0 Rahman A, Wang J, Guo J https://www.nanohub.org/resources/220 [2006-2]
[17] Southampton CNT resources Zhou D F, Kazmierski T J, Hashimi B M A, Ashburn P https://www.cnt.ecs.soton.ac.uk
Catalog
Metrics
- Abstract views: 8160
- PDF Downloads: 1217
- Cited By: 0