-
In this paper, a novel symmetrical double-gate strained Si single halo metal-oxide semiconductor field effect transistor with gate stack dielectric is proposed. The two-dimensional Poisson's equation is solved under suitable boundary condition by applying the parabolic potential approximation. This analytical model for the surface potential and the threshold voltage is derived. The strained Si channel is divided into two different doping regions, and the surface potential along the channel, compared with the normal double-gate device (uniform doping channel), exhibits a stepped potential variation, which can increase carrier transport speed. The influence of drain-source voltage on short channel effects (SCEs) is discussed. it is shown that threshold voltage decreases with Ge mole fraction increasing in butter layer, increases with the increase of the high-k layer dielectric permittivity of gate stack, and increases with the increase of doping concentration in the channel near the source, of which the physical mechanisms are analyzed and explained. Results show that the novel device can suppress threshold voltage drift and SCEs, which provides the basic guidance for designing the CMOS-based devices in nanometer scale.
-
Keywords:
- strained Si /
- single halo /
- symmetrical double-gate /
- metal-oxide semiconductor field effect transistor
[1] Li Y, Chou H M 2005 IEEE Trans. Nanotechnol. 4 645
[2] Saxena M, Haldar S, Gupta M, Gupta R S 2004 Solid State Electron. 48 1167
[3] Chiage T K, Chen M L 2007 Solid State Electron 51 387
[4] Lin G J, Lai H K, Li C, Chen S Y, Yu J Z 2008 Chin. Phys. B 17 3479
[5] Reddy G V, Kumar M J 2004 Microelectr. J. 35 761
[6] Djeffal F, Meguellati M, Benhaya A 2009 Physica E 41 1872
[7] Wang X Y, Zhang H M, Song J J, Ma J L, Wang G Y, An J H 2011 Acta Phys. Sin. 60 077205 (in Chinese) [王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华 2011 60 077205]
[8] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Acta Phys. Sin. 59 8131 (in Chinese) [李劲, 刘红侠, 李斌, 曹磊, 袁博 2010 59 8131]
[9] Kumar M, Dubey S, Tiwri P K, Jit S 2013 J.Compt.Electron. 12 20
[10] Tezuka T, Sugiyama N 2003 IEEE Trans. Electron Dev. 50 1328
[11] Liu X Y, Kang J F, Sun L 2002 IEEE Electron Lett. 23 270
[12] Hamid H A E, Guitart J R, Iniguez B 2007 IEEE Trans. Electron Dev. 54 1402
[13] Young K K 1989 IEEE Trans. Electron Dev. 36 399
[14] Kummer M J, Venkataraman V, Nawal S 2006 IEEE Trans. Electron Dev. 53 364
[15] Venkataraman V, Nawal S, Kummer M J 2007 IEEE Trans. Electron Dev. 54 554
-
[1] Li Y, Chou H M 2005 IEEE Trans. Nanotechnol. 4 645
[2] Saxena M, Haldar S, Gupta M, Gupta R S 2004 Solid State Electron. 48 1167
[3] Chiage T K, Chen M L 2007 Solid State Electron 51 387
[4] Lin G J, Lai H K, Li C, Chen S Y, Yu J Z 2008 Chin. Phys. B 17 3479
[5] Reddy G V, Kumar M J 2004 Microelectr. J. 35 761
[6] Djeffal F, Meguellati M, Benhaya A 2009 Physica E 41 1872
[7] Wang X Y, Zhang H M, Song J J, Ma J L, Wang G Y, An J H 2011 Acta Phys. Sin. 60 077205 (in Chinese) [王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华 2011 60 077205]
[8] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Acta Phys. Sin. 59 8131 (in Chinese) [李劲, 刘红侠, 李斌, 曹磊, 袁博 2010 59 8131]
[9] Kumar M, Dubey S, Tiwri P K, Jit S 2013 J.Compt.Electron. 12 20
[10] Tezuka T, Sugiyama N 2003 IEEE Trans. Electron Dev. 50 1328
[11] Liu X Y, Kang J F, Sun L 2002 IEEE Electron Lett. 23 270
[12] Hamid H A E, Guitart J R, Iniguez B 2007 IEEE Trans. Electron Dev. 54 1402
[13] Young K K 1989 IEEE Trans. Electron Dev. 36 399
[14] Kummer M J, Venkataraman V, Nawal S 2006 IEEE Trans. Electron Dev. 53 364
[15] Venkataraman V, Nawal S, Kummer M J 2007 IEEE Trans. Electron Dev. 54 554
Catalog
Metrics
- Abstract views: 6134
- PDF Downloads: 630
- Cited By: 0