-
A resistometric model based on microscopic analysis of electromigration failure mechanism is built. An extraction method for failure parameters of electromigration in copper interconnects is proposed from resistometric characteristics including the slope and step height. The results show that the failure time can be considered as the time to deplete grains at the cathode line end under a given stressing current. Two dominant failure modes with resuling slit and trench voids are observed in electromigration induced failures. The resistance curve for the trench-voiding failure mode consists of two characteristic regions,i.e., a step jump and an oblique line. The grain size and the extracted critical void length are lognormally distributed with close parameters. The variation in the slop of the oblique line in resistance curve with temperature obeys an exponential law. Activation energy of approximately 0.9 eV obtained from the resisometric model is consistent with that from Black equation.
-
Keywords:
- interconnect /
- electromigration /
- resitometric characteristic
[1] Rosenberg R, Edelstein D C, Hu C K, Rodbell K P 2011 Annual Review of Materials Science 30 229
[2] Tu K N 2003 J. Appl. Phys. 94 5451
[3] Gall M, Capasso C, Jawarani D, Hernandez R, Kawasaki H, Ho P S 2001 J. Appl. Phys. 90 732
[4] Lee K D, Ho P S 2004 IEEE Transactions on Device and Materials Reliability 4 237
[5] Hu C K, Gignac L, Rosenberg R 2006 Microelectronics Reliability 46 213
[6] Doyen L, Petitprez E, Waltz P, Federspiel X, Arnaud L, Wouters Y 2008 J. Appl. Phys. 104 123521
[7] Ceric H, Selberherr S 2011 Materials Science and Engineering R 71 53
[8] Nelson W 1982 Applied Life Data Analysis (New York: Wiley) 168
[9] Hu C K, Rosenberg R, Lee K Y 1999 Appl. Phys. Lett. 74 2945
[10] Choi Z S, Mönig R, Thompson C V 2007 Appl. Phys. Lett. 90 241913
[11] Wu Z Y, Yang Y T, Chai C C, Liu L, Peng J, Wei J T 2012 Acta Phys. Sin. 61 018501 (in Chinese) [吴振宇, 杨银堂, 柴常春, 刘莉, 彭杰, 魏经天 2012 61 018501]
[12] Black J R 1969 IEEE Transactions on Electron Devices 16 338
[13] Lloyd J R, Lane M W, Liniger E G, Hu C K, Shaw T M, Rosenberg R 2005 IEEE Transactions on Device and Materials Reliability 5 113
-
[1] Rosenberg R, Edelstein D C, Hu C K, Rodbell K P 2011 Annual Review of Materials Science 30 229
[2] Tu K N 2003 J. Appl. Phys. 94 5451
[3] Gall M, Capasso C, Jawarani D, Hernandez R, Kawasaki H, Ho P S 2001 J. Appl. Phys. 90 732
[4] Lee K D, Ho P S 2004 IEEE Transactions on Device and Materials Reliability 4 237
[5] Hu C K, Gignac L, Rosenberg R 2006 Microelectronics Reliability 46 213
[6] Doyen L, Petitprez E, Waltz P, Federspiel X, Arnaud L, Wouters Y 2008 J. Appl. Phys. 104 123521
[7] Ceric H, Selberherr S 2011 Materials Science and Engineering R 71 53
[8] Nelson W 1982 Applied Life Data Analysis (New York: Wiley) 168
[9] Hu C K, Rosenberg R, Lee K Y 1999 Appl. Phys. Lett. 74 2945
[10] Choi Z S, Mönig R, Thompson C V 2007 Appl. Phys. Lett. 90 241913
[11] Wu Z Y, Yang Y T, Chai C C, Liu L, Peng J, Wei J T 2012 Acta Phys. Sin. 61 018501 (in Chinese) [吴振宇, 杨银堂, 柴常春, 刘莉, 彭杰, 魏经天 2012 61 018501]
[12] Black J R 1969 IEEE Transactions on Electron Devices 16 338
[13] Lloyd J R, Lane M W, Liniger E G, Hu C K, Shaw T M, Rosenberg R 2005 IEEE Transactions on Device and Materials Reliability 5 113
Catalog
Metrics
- Abstract views: 8768
- PDF Downloads: 525
- Cited By: 0