-
The effect of electromigration (EM) on the interfacial reaction in the Ni/Sn3.0Ag0.5Cu/Au/Pd/Ni-P flip chip solder joint is investigated under a current density of 1.0× 104 A/cm2 at 150℃. The (Cu,Ni)6Sn5 intermetallic compounds (IMCs) form at both solder/Ni and solder/Ni-P interfaces in the as-reflowed state. During aging at 150℃, the (Cu,Ni)6Sn5 interfacial IMCs grow thicker and transform into (Ni,Cu)3Sn4 type after 200 h at solder/Ni interface and 600 h at solder/Ni-P interface, respectively. During EM, the current direction plays an important role in Ni-P layer consumption. When electrons flow from Ni-P to Ni, EM enhances the consumption of Ni-P, i.e., the Ni-P s completely consumed and transforms into Ni2SnP after EM for 600 h. There is no Cu-Sn-Ni ternary IMC at the solder/Ni-P interface (cathode). Crack forms at the Ni2SnP/Cu interface due to the weak bonding force between Ni2SnP and Cu. When electrons flow from Ni to Ni-P, no obvious consumption of Ni-P is observed during EM; the current crowding effect induces a rapid and localized dissolution of Ni UBM and Cu pad at the chip side (cathode). The dissolved Ni and Cu atoms are driven along the flowing direction of electrons and form a large number of IMC particles in the solder matrix. During EM, the (Au,Pd,Ni)Sn4 phase prefers to be redistributed only at the anode interface, regardless of the direction of electron flow.
-
Keywords:
- electromigration /
- lead-free solder /
- Ni/Sn3.0Ag0.5Cu/Au/Pd/Ni-P solder joint /
- interfacial reaction
[1] Lu YD, He X Q, En Y F, Wang X, Zhuang Z Q 2009 Acta Phys. Sin. 58 1942 (in Chinese) [陆裕东, 何小琦, 恩云飞, 王歆, 庄志强 2009 58 1942]
[2] Liang Y C, Tsao W A, Chen C, Yao D J, Huang A T 2012 J. Appl. Phys. 111 043705
[3] Chiu Y T, Lin K L, Lai Y S 2012 J. Appl. Phys. 111 043517
[4] Chen L D, Huang M L, Zhou S M, Ye S, Ye Y M, Wang J F, Cao X 2011 Proceeding of the International Electronic Packaging Technology & High Density Packaging, Shanghai, August 8-11, p316
[5] Lin Y L, Lai Y S, Tsai C M, Kao C R 2006 J. Electron. Mater. 35 2147
[6] Gu X, Chan Y C 2009 J. Appl. Phys. 105 093537
[7] Liang S W, Chen C, Han J K, Xu L H, Tu K N 2010 J. Appl. Phys. 107 093715
[8] Lu YD, He X Q, En Y F, Wang X, Zhuang Z Q 2010. Acta Phys. Sin. 59 3438 (in Chinese) [陆裕东, 何小琦, 恩云飞, 王歆, 庄志强 2010 59 3438]
[9] Peng S P, Wu W H, Ho C E, Huang Y M 2010 J. Alloys Compd. 493 431
[10] Yoon J W, Moon W C, Jung S B 2006Microelectron. Eng. 83 2329
[11] Lu C T, Tseng H W, Chang C H, Huang T S, Liu C Y 2010 Appl. Phys. Lett. 96 232103
[12] Dyson B F, Anthony T R, Tumbull D 1967 J. Appl. Phys. 38 3408
[13] Lin Y H, Tsai C M, Hu Y C, Lin Y L, Kao C R 2005 J. Electron. Mater. 34 27
[14] Ho P S, Kwok T 1989 Rep. Prog. Phys. 52 301
-
[1] Lu YD, He X Q, En Y F, Wang X, Zhuang Z Q 2009 Acta Phys. Sin. 58 1942 (in Chinese) [陆裕东, 何小琦, 恩云飞, 王歆, 庄志强 2009 58 1942]
[2] Liang Y C, Tsao W A, Chen C, Yao D J, Huang A T 2012 J. Appl. Phys. 111 043705
[3] Chiu Y T, Lin K L, Lai Y S 2012 J. Appl. Phys. 111 043517
[4] Chen L D, Huang M L, Zhou S M, Ye S, Ye Y M, Wang J F, Cao X 2011 Proceeding of the International Electronic Packaging Technology & High Density Packaging, Shanghai, August 8-11, p316
[5] Lin Y L, Lai Y S, Tsai C M, Kao C R 2006 J. Electron. Mater. 35 2147
[6] Gu X, Chan Y C 2009 J. Appl. Phys. 105 093537
[7] Liang S W, Chen C, Han J K, Xu L H, Tu K N 2010 J. Appl. Phys. 107 093715
[8] Lu YD, He X Q, En Y F, Wang X, Zhuang Z Q 2010. Acta Phys. Sin. 59 3438 (in Chinese) [陆裕东, 何小琦, 恩云飞, 王歆, 庄志强 2010 59 3438]
[9] Peng S P, Wu W H, Ho C E, Huang Y M 2010 J. Alloys Compd. 493 431
[10] Yoon J W, Moon W C, Jung S B 2006Microelectron. Eng. 83 2329
[11] Lu C T, Tseng H W, Chang C H, Huang T S, Liu C Y 2010 Appl. Phys. Lett. 96 232103
[12] Dyson B F, Anthony T R, Tumbull D 1967 J. Appl. Phys. 38 3408
[13] Lin Y H, Tsai C M, Hu Y C, Lin Y L, Kao C R 2005 J. Electron. Mater. 34 27
[14] Ho P S, Kwok T 1989 Rep. Prog. Phys. 52 301
Catalog
Metrics
- Abstract views: 7726
- PDF Downloads: 644
- Cited By: 0