-
Novel Nd0.9Sr0.1Al1-xMxO3-δ (M = Co, Fe, Mn; x =0, 0.15, 0.3, 0.5) conducting ceramics each with a hexagonal perovskite structure are prepared using organic-gel method combined with subsequent high temperature sintering. The influences of transition elements (Co, Fe, and Mn) and their dosages on the structure characteristics and electrical properties are investigated in detail. The experimental results reveal that well-crystallized Nd0.9Sr0.1Al1-xMxO3-δ perovskite oxide ultrafine powders can be obtained by calcining the gel precursors at 900 ℃ for 5 h. The lattice parameters of sintered ceramics increase with the increase of transition metal content (x), and they increase according to the order of Co, Mn, and Fe. All the samples are mixed conductors of oxygen ions and holes in air, and the oxygen ion transport number is enhanced monotonically from 0.32 at 500 ℃ to 0.63 at 850 ℃ for NdAlO3-δ ceramic single-doped with alkaline earth metal Sr, indicating that this material has an electronic-to-ionic dominant transition in electrical conductivity with measurement temperature increasing. Whereas the oxygen ion transport numbers are all below 0.001 for the samples co-doped with Sr and transition metals (Co, Fe, and Mn), and their electrical conductivities are absolutely dominated by p-type conduction. It is found that the conductivity values increase with the increase of x value, and they increase according to the order of Mn, Fe, and Co, while the change of corresponding apparent activation energies is just the opposite. Nd0.9Sr0.1Al0.5Co0.5O3-δ ceramic has the highest electrical conductivity, ~100.8 S/cm at 800 ℃, and the lowest apparent activation energy (0.135 eV) in all the synthesized samples. The observed changes in structure and electrical property in this study can be explained on the basis of the difference in ionic radii among the doped transition metals as well as the differences in bond energies and covalencies among the M-O bonds.
-
Keywords:
- NdAlO3 /
- alkaline earth and transition metal doping /
- mixed conductor /
- electrical property
[1] Ngamou P H T, Bahlawane N 2009 J. Solid State Chem. 182 849
[2] Lee K T, Manthiram A 2005 J. Electrochem. Soc. 152 A197
[3] Lee K T, Manthiram A 2006 J. Electrochem. Soc. 153 A794
[4] Ecija A, Vidal K, Larrañaga A, Martinez-Amesti A, Ortega-San-Martin L, Arriortua M I 2011 Solid State Ionics 201 35
[5] Sakaki Y, Takeda Y, Kato A, Imanishi N. Yamamoto O. Hattori M, Iio M, Esaki Y 1999 Solid State Ionics 118 187
[6] Wen T L, Tu H Y, Xu Z H, Yamamoto O 1999 Solid State Ionics 121 25
[7] Tu H Y, Takeda Y, Imanishi N, Yamamoto O 1999 Solid State Ionics 117 277
[8] Skinner S J 2001 Int. J. Inorg. Mater. 3 113
[9] Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y 2003 Solid State Ionics 158 55
[10] Kostogloudis G C, Ftikos C 2007 J. Europ. Ceram. Soc. 27 273
[11] Lee K T, Manthiram A 2006 J. Power Sour. 158 1202
[12] Lee K T, Manthiram A 2007 Solid State Ionics 178 995
[13] Torres-Garibay C, Kovar D, Manthiram A 2009 J. Power Sour. 187 480
[14] Dutta a, Mukhopadhyay H, Basu R N 2009 J. Europ. Ceram. Soc. 29 2003
[15] Hariharan R, Venkatasubramanian A, Gopalan P 2010 J. Solid State Electrochem. 14 1657
[16] Kharton V V, Maruques F M, B Atkinson A 2004 Solid State Ionics 174 134
[17] Chen T Y, Fung K Z 2004 J. Power Sour. 132 1
[18] Ishihara T 2008 Perovskite Oxide for Solid Oxide Fuel Cells (London: Springer) p69
[19] Fu Q X, Tietz F, Lersch P, Stöver D 2006 Solid State Ionics 177 1059
[20] Tsipis E V, Kharton V V, Waerenborgh J C, Rojas D P, Naumovich E N, Frade J R 2006 J. Alloys Comp. 413 244
[21] Xiang J, Wei T, Peng T G, Zhang Y, Lou K X, Shen X Q 2009 Acta Phys. Sin. 58 3402 (in Chinese) [向军, 卫婷, 彭田贵, 张誉, 娄可行, 沈湘黔 2009 58 3402]
[22] Xiang J, Guo Y T, Chu Y Q, Zhou G Z 2011 Acta Phys. Sin. 60 027203 (in Chinese) [向军, 郭银涛, 褚艳秋, 周广振 2011 60 027203]
[23] Zhu C F, Xue J H, Wang L 2011 Chinese. J. Inorg. Chem. 27 2377 (in Chinese) [朱承飞, 薛金花, 王李 2011 无机化学学报 27 2377]
[24] Pecchi G, Campos C, Pena O 2009 Mater. Res. Bull. 44 846
[25] Zhu C F, Wang G, Xue J H, Wang X J 2009 Acta Phys. Chim. Sin. 25 1179 (in Chinese) [朱承飞, 王刚, 薛金花, 王晓钧2009 物理化学学报 25 1179]
[26] Shannon R D 1976 Acta Cryst. A 32 751
[27] Jiang J G, Cui C, Chen G 2005 J. Mater. Sci. Engin. 23 902 (in Chinese) [江金国, 崔崇, 陈光2005 材料科学与工程学报 23 902]
[28] Mei Y, Chen L, Cao Y Z, Liu B Q, He J H, Zhu Z W, Xu Z A 2010 Acta Phys. Sin. 59 2795 (in Chinese) [梅烨, 陈亮, 曹永珍, 刘宝琴, 何军辉, 朱增伟, 许祝安 2010 59 2795]
[29] Xia Z C, Tang C Q 1999 Acta Phys. Sin. 48 1518 (in Chinese) [夏正才, 唐超群 1999 25 1518]
[30] Kang J S, Lee H J, Kim G, Kim G H, Dabrowski B, Kolesnik S, Lee Hangil, Kim J Y, Min B I 2008 Phys. Rev. B 78 054434
-
[1] Ngamou P H T, Bahlawane N 2009 J. Solid State Chem. 182 849
[2] Lee K T, Manthiram A 2005 J. Electrochem. Soc. 152 A197
[3] Lee K T, Manthiram A 2006 J. Electrochem. Soc. 153 A794
[4] Ecija A, Vidal K, Larrañaga A, Martinez-Amesti A, Ortega-San-Martin L, Arriortua M I 2011 Solid State Ionics 201 35
[5] Sakaki Y, Takeda Y, Kato A, Imanishi N. Yamamoto O. Hattori M, Iio M, Esaki Y 1999 Solid State Ionics 118 187
[6] Wen T L, Tu H Y, Xu Z H, Yamamoto O 1999 Solid State Ionics 121 25
[7] Tu H Y, Takeda Y, Imanishi N, Yamamoto O 1999 Solid State Ionics 117 277
[8] Skinner S J 2001 Int. J. Inorg. Mater. 3 113
[9] Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y 2003 Solid State Ionics 158 55
[10] Kostogloudis G C, Ftikos C 2007 J. Europ. Ceram. Soc. 27 273
[11] Lee K T, Manthiram A 2006 J. Power Sour. 158 1202
[12] Lee K T, Manthiram A 2007 Solid State Ionics 178 995
[13] Torres-Garibay C, Kovar D, Manthiram A 2009 J. Power Sour. 187 480
[14] Dutta a, Mukhopadhyay H, Basu R N 2009 J. Europ. Ceram. Soc. 29 2003
[15] Hariharan R, Venkatasubramanian A, Gopalan P 2010 J. Solid State Electrochem. 14 1657
[16] Kharton V V, Maruques F M, B Atkinson A 2004 Solid State Ionics 174 134
[17] Chen T Y, Fung K Z 2004 J. Power Sour. 132 1
[18] Ishihara T 2008 Perovskite Oxide for Solid Oxide Fuel Cells (London: Springer) p69
[19] Fu Q X, Tietz F, Lersch P, Stöver D 2006 Solid State Ionics 177 1059
[20] Tsipis E V, Kharton V V, Waerenborgh J C, Rojas D P, Naumovich E N, Frade J R 2006 J. Alloys Comp. 413 244
[21] Xiang J, Wei T, Peng T G, Zhang Y, Lou K X, Shen X Q 2009 Acta Phys. Sin. 58 3402 (in Chinese) [向军, 卫婷, 彭田贵, 张誉, 娄可行, 沈湘黔 2009 58 3402]
[22] Xiang J, Guo Y T, Chu Y Q, Zhou G Z 2011 Acta Phys. Sin. 60 027203 (in Chinese) [向军, 郭银涛, 褚艳秋, 周广振 2011 60 027203]
[23] Zhu C F, Xue J H, Wang L 2011 Chinese. J. Inorg. Chem. 27 2377 (in Chinese) [朱承飞, 薛金花, 王李 2011 无机化学学报 27 2377]
[24] Pecchi G, Campos C, Pena O 2009 Mater. Res. Bull. 44 846
[25] Zhu C F, Wang G, Xue J H, Wang X J 2009 Acta Phys. Chim. Sin. 25 1179 (in Chinese) [朱承飞, 王刚, 薛金花, 王晓钧2009 物理化学学报 25 1179]
[26] Shannon R D 1976 Acta Cryst. A 32 751
[27] Jiang J G, Cui C, Chen G 2005 J. Mater. Sci. Engin. 23 902 (in Chinese) [江金国, 崔崇, 陈光2005 材料科学与工程学报 23 902]
[28] Mei Y, Chen L, Cao Y Z, Liu B Q, He J H, Zhu Z W, Xu Z A 2010 Acta Phys. Sin. 59 2795 (in Chinese) [梅烨, 陈亮, 曹永珍, 刘宝琴, 何军辉, 朱增伟, 许祝安 2010 59 2795]
[29] Xia Z C, Tang C Q 1999 Acta Phys. Sin. 48 1518 (in Chinese) [夏正才, 唐超群 1999 25 1518]
[30] Kang J S, Lee H J, Kim G, Kim G H, Dabrowski B, Kolesnik S, Lee Hangil, Kim J Y, Min B I 2008 Phys. Rev. B 78 054434
Catalog
Metrics
- Abstract views: 8600
- PDF Downloads: 483
- Cited By: 0