Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic and electrical-thermal transport properties of Co3Sn2S2 single crystal

Zhu Xin-Qiang Wang Jian Zhu Can Luo Feng Chen Shu-Quan Xu Jia-Hui Xu Feng Wang Jia-Fu Zhang Yan Sun Zhi-Gang

Citation:

Magnetic and electrical-thermal transport properties of Co3Sn2S2 single crystal

Zhu Xin-Qiang, Wang Jian, Zhu Can, Luo Feng, Chen Shu-Quan, Xu Jia-Hui, Xu Feng, Wang Jia-Fu, Zhang Yan, Sun Zhi-Gang
PDF
HTML
Get Citation
  • Co3Sn2S2 is a magnetic Weyl semimetal with special magnetic and electronic structure. Its unique band structure makes it have many interesting physical properties such as abnormal Hall effect, negative magnetoresistance effect, and abnormal Nernst effect. In this work, high quality Co3Sn2S2 single crystal with a dimension of 8 mm×7 mm×0.5 mm is synthesized by self-flux method. We measure its electrical transport properties (magnetoresistance effect, Hall effect, etc.) and thermal transport properties (Seebeck effect) at low temperature. The free surface of the single crystal exhibits obvious layered growth characteristics, indicating that the Co3Sn2S2 crystal grows along the c-axis direction. The value of the normalized resistivity ρ3 K/ρ300 K for the single crystal sample at 3 K is only 0.08, indicating that the crystal quality of the sample is at a relatively high level. The thermomagnetic (M-T) curves show that a special magnetic structure near 140 K (TA) below the Curie temperature point (TC = 178 K). This special magnetic structure is a magnetic transition state in which ferromagnetic state and antiferromagnetic state coexist, making them appear as a local minimum point in the M-T curve. The Co3Sn2S2 shows a negative anomalous “convex” magnetoresistance in a large range of 100—160 K, and there exists a maximum critical magnetic field B0 (1.41 T), near TA. The coercivity HC drops to almost zero at TA and the Hall resistivity ρyx also reaches a maximum value of about 20 μΩ·cm. This may be due to the competition between ferromagnetic state and antiferromagnetic state to form non-trivial spin texture, resulting in the unique electrical transport behavior near TA. When the temperature rises to TC, the Co3Sn2S2 undergoes a ferromagnetic phase transition, with a saturation magnetization of MS, anomalous Hall conductivity $ {\sigma }_{yx}^{\rm A} $, and Hall resistivity ρyx sharply decreasing. Large anomalous Hall conductance $ {\sigma }_{yx}^{A} $ and anomalous Hall angle $ {\sigma }_{yx}^{\rm A}/\sigma $ are also present in Co3Sn2S2, with these values reaching 1.4×103 Ω−1·cm−1 and 18%, respectively. The magnetoresistance measurements reveal that the variation of the magnetoresistance with the magnetic field is due to the combination of linear and parabolic contributions. The change in magnetoresistance with the angle θ between the magnetic field B and the current I has a reversal symmetry with C2x symmetry, and the change in θ does not affect the contribution of its magnetoresistance source. In addition, positive magnetoresistance and negative magnetoresistance are found to be shifted at about 60 K. the shift in positive magnetoresistance and negative magnetoresistance are mainly attributed to the competing positive contribution of the Lorentz force to the magnetoresistance and the negative contribution of the spin disorder. The scattering mechanism of Co3Sn2S2 at low temperature is a combination of acoustic wave scattering and electron– phonon scattering. At 60–140 K, the enhancement of spin disorder causes enhanced electron–phonon scattering, resulting in a plateau characteristic of the Seebeck coefficient S. The research shows that the special magnetic structure and electron spin of Co3Sn2S2 at low temperatures have an important influence on its electrothermal transport behavior.
      Corresponding author: Sun Zhi-Gang, sun_zg@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174297, 12204342) and the National Key Research and Development Program of China (Grant No. 2018YFE0111500).
    [1]

    Yan M H, Jin Y C, Hou X F, Guo Y F, Tsaturyan A, Makarova A, Smirnov D, Dedkov Y, Voloshina E 2021 J. Phys. Chem. Lett. 12 9807Google Scholar

    [2]

    Dedkov Y S, Holder M, Molodtsov S, Rosner H 2008 J. Phys. Conf. Ser. 100 072011

    [3]

    Shen J L, Zeng Q Q, Zhang S, Sun H Y, Yao Q S, Xi X K, Wang W H, Wu G S, Shen B G, Liu Q H, Liu E K 2020 Adv. Funct. Mater. 30 2000830Google Scholar

    [4]

    Thakur G S, Vir P, Guin S N, Shekhar C, Weihrich R, Sun Y, Kumar N, Felser C 2020 Chem. Mater. 32 1612Google Scholar

    [5]

    Lachman E, Murphy R A, Maksimovic N, Kealhofer R, Haley S, McDonald R D, Long J R, Analytis J G 2020 Nat. Commun. 11 560Google Scholar

    [6]

    Liu E K, Sun Y, Kumar N, Muchler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süβ V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [7]

    Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, Lei H C 2018 Nat. Commun. 9 3681Google Scholar

    [8]

    Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E K, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 1806622Google Scholar

    [9]

    Papaj M, Fu L 2021 Phys. Rev. B 103 075424Google Scholar

    [10]

    Yang H Y, You W, Wang J L, Huang J W, Xi C Y, Xu X F, Cao C, Tian M L, Xu Z A, Dai J H, Li Y K 2020 Phys. Rev. Mater. 4 024202Google Scholar

    [11]

    Ding L C, Koo J, Xu L C, Li X K, Lu X F, Zhao L X, Wang Q, Yin Q W, Lei H C, Yan B H, Zhu Z W, Behnia K 2019 Phys. Rev. X 9 041061

    [12]

    Okamura Y, Minami S, Kato Y, Fujishiro Y, Kaneko Y, Ikeda J, Muramoto J, Kaneko R, Ueda K, Kocsis V, Kanazawa N, Taguchi Y, Koretsune T, Fujiwara K, Tsukazaki A, Arita R, Tokura Y, Takahashi Y 2020 Nat. Commun. 11 4619Google Scholar

    [13]

    Kassem M A, Tabata Y, Waki T, Nakamura H 2017 Phys. Rev. B 96 014429Google Scholar

    [14]

    Shen J L, Zeng Q Q, Zhang S, Tong W, Ling L S, Xi C Y, Wang Z S, Liu E K, Wang W H, Wu G H, Shen B G 2019 Appl. Phys. Lett. 115 212403Google Scholar

    [15]

    Zhang Q, Okamoto S, Samolyuk G D, Stone M B, Kolesnikov A I, Xue R, Yan J, McGuire M A, Mandrus D, Tennant D A 2021 Phys Rev Lett 127 117201Google Scholar

    [16]

    Wu H C, Sun P J, Hsieh D J, Chen H J, Kakarla D C, Deng L Z, Chu C W, Yang H D 2020 Mater. Today Phys. 12 100189Google Scholar

    [17]

    Lee C, Vir P, Manna K, Shekhar C, Moore J E, Kastner M A, Felser C, Orenstein J 2022 Nat. Commun. 13 3000Google Scholar

    [18]

    Soh J R, Yi C, Zivkovic I, Qureshi N, Stunault A, Ouladdiaf B, Rodriguez-Velamazan J A, Shi Y, Ronnow H M, Boothroyd A T 2022 Phys. Rev. B 105 094435Google Scholar

    [19]

    Guguchia Z, Verezhak J A T, Gawryluk D J, Tsirkin S S, Yin J X, Belopolski I, Zhou H, Simutis G, Zhang S S, Cochran T A, Chang G, Pomjakushina E, Keller L, Skrzeczkowska Z, Wang Q, Lei H C, Khasanov R, Amato A, Jia S, Neupert T, Luetkens H, Hasan M Z 2020 Nat. Commun. 11 559Google Scholar

    [20]

    Nagpal V, Patnaik S 2020 J. Phys. Condens. Matter 32 405602Google Scholar

    [21]

    Geishendorf K, Schlitz R, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein S T B, Thomas A 2019 Appl. Phys. Lett. 114 092403Google Scholar

    [22]

    Ding L C, Koo J, Yi C J, Xu L C, Zuo H K, Yang M, Shi Y G, Yan B H, Behnia K, Zhu Z W 2021 J. Phys. D Appl. Phys. 54 454003Google Scholar

    [23]

    Rathod S, Megha, Lakhani A, Kumar D 2020 J. Solid State Chem. 289 121461Google Scholar

    [24]

    Shama, Gopal R K, Singh Y 2020 J. Magn. Magn. Mater. 502 166547Google Scholar

    [25]

    Yan B, Felser C (Marchetti M C, Sachdev S ed) 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [26]

    Holder M, Dedkov Y S, Kade A, Rosner H, Schnelle W, Leithe-Jasper A, Weihrich R, Molodtsov S L 2009 Phys. Rev. B 79 205116Google Scholar

    [27]

    Lin X, Bud'ko S L, Canfield P C 2012 Philos. Mag. 92 2436Google Scholar

    [28]

    Rathod S, Megha, Lakhani A, Kumar D 2020 AIP Conf. Proc. 2220 060007

    [29]

    Toby B H, Von Dreele R B 2013 J. Appl. Crystallogr. 46 544Google Scholar

    [30]

    Vu T V, Lavrentyev A A, Gabrelian B V, Sabov V I, Sabov M Y, Pogodin A I, Barchiy I E, Fedorchuk A O, Balinska A, Bak Z, Khyzhun O Y, Piasecki M 2020 J. Alloys Compd. 848 156485Google Scholar

    [31]

    Jiang B Y, Zhao J J, Qian Y J, Zhang S, Qiang X B, Wang L J Y, Bi R, Fan J W, Lu H Z, Liu E K, Wu X S 2022 Phys. Rev. Lett. 129 056601Google Scholar

    [32]

    Kassem M A, Tabata Y, Waki T, Nakamura H 2016 J. Phys. Soc. Jpn. 85 064706Google Scholar

    [33]

    Liu C, Yi C J, Wang X Y, Shen J L, Xie T, Yang L, Fennel T, Stuhr U, Li S L, Weng H M, Shi Y G, Liu E K, Luo H Q 2021 Sci. China Phys. Mech. Astron. 64 257511Google Scholar

    [34]

    Hu J, Kan X, Chen Z, Zheng G, Ma Y 2022 J. Am. Ceram. Soc. 105 4827Google Scholar

    [35]

    Wang J, Luo F, Zhu C, Zhang S, Yang Z, Wang J F, He X, Zhang Y, Sun Z G 2022 J. Appl. Phys. 132 135103Google Scholar

    [36]

    Abrikosov A A 2000 Europhys. Lett. 49 789Google Scholar

    [37]

    Shama, Singh R K 2019 AIP Conf. Proc. 2115 030454

    [38]

    Dos Reis R D, Ajeesh M O, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M, Hassinger E 2016 New J. Phys. 18 085006Google Scholar

    [39]

    Wang J, Zhu C, Luo F, Wang J F, He X, Zhang Y, Liu H X, Sun Z G 2023 ACS Appl. Mater. Interfaces 15 8105Google Scholar

    [40]

    Fivaz R, Mooser E 1964 Phys. Rev. 136 A833Google Scholar

    [41]

    Liu Y, Stavitski E, Attenkofer K, Petrovic C 2018 Phys. Rev. B 97 165415Google Scholar

    [42]

    Geishendorf K, Vir P, Shekhar C, Felser C, Facio J I, van den Brink J, Nielsch K, Thomas A, Goennenwein S T B 2020 Nano Lett. 20 300Google Scholar

    [43]

    Mangelis P, Vaqueiro P, Jumas J C, da Silva I, Smith R I, Powell A V 2017 J. Solid State Chem. 251 204Google Scholar

    [44]

    Zhu C, Wang J, Luo F, Zhang S, Wang J F, Zhang Y, Liu H X, Sun Z G 2022 ACS Appl. Mater. Interfaces 14 38854Google Scholar

  • 图 1  (a) Co3Sn2S2的粉末XRD结果, 黑×表示测量的衍射峰强度, 红线为计算的衍射峰强度, 蓝色的线条表示计算计算数据与测量数据之差, 绿色的线条表示Bragg衍射峰的位置; (b) Co3Sn2S2的晶体表面XRD结果, XRD的峰对应于六方晶格的ab平面, 插图为Co3Sn2S2晶体的光学影像

    Figure 1.  (a) Powder XRD results of Co3Sn2S2, black × represents the measured diffraction peak intensity, the red line represents the calculated diffraction peak intensity, the blue line represents the difference between the calculated data and the measured data, and the green line represents the position of the Bragg diffraction peak; (b) XRD results of the crystal surface of Co3Sn2S2. The peak of XRD corresponds to the ab plane of the hexagonal lattice. The insert shows the optical image of Co3Sn2S2 crystal.

    图 2  (a) Co3Sn2S2样品在2000倍下的表面SEM结果; (b) EDS面扫区域形貌; (c)—(e) Co3Sn2S2样品的EDS面扫描结果

    Figure 2.  (a) Surface SEM results of Co3Sn2S2 sample at 2000 times; (b) EDS surface scanning area morphology; (c)–(e) EDS surface scan results of Co3Sn2S2 sample.

    图 3  (a) 零场下Co3Sn2S2的电阻率ρ随温度变化的曲线, 插图为电阻率测量原理图; (b) 以 300 K 下的电阻率为基准的归一化电阻率 ρ/ρ300 K随温度的变化曲线, 虚线是文献[6, 7, 15, 31]中报道的样品的归一化电阻率

    Figure 3.  (a) Temperature dependence of resistivity ρ of Co3Sn2S2 at zero field, the insert is diagram of resistivity measurement; (b) temperature dependence of normalized resistivity ρ/ρ300 K based on resistivity at 300 K. The dotted line is the normalized resistivity of the sample reported in Ref.[6, 7, 15, 31].

    图 4  (a) Hc轴, 磁场为50 Oe时, Co3Sn2S2样品的磁化强度M随温度的变化曲线, 插图展示的是磁化强度的一阶微分dM/dT随温度变化曲线; (b) Hc轴, Hc轴, 在50 K, 100 K, 150 K下磁化强度M随磁场H的变化曲线: (c) Hc轴, 在50—300 K下的磁化强度M随磁场H的变化曲线; (d) Hc轴, 饱和磁化强度MS和矫顽力HC随温度的变化曲线

    Figure 4.  (a) Hc axis, the magnetic field is 50 Oe, the temperature dependence of the magnetization M of Co3Sn2S2. The insert shows the dM/dT with T; (b) Hc axis, Hc axis, magnetic field dependence of magnetization at 50 K, 100 K, 150 K; (c) Hc axis, M-H at 50–300 K; (d) Hc axis, the temperature dependence of the saturation magnetization MS and coercivity HC.

    图 5  (a)当BI时, 3—220 K的磁阻曲线; (b) 当BI时, B = 7 T下磁阻MR随温度变化曲线, 插图为100—160 K的“凸形”磁阻的临界磁场B0随温度变化曲线; (c) 当BI时, 3 K下磁阻MR随磁场的变化, 黑色的实线表示根据公式拟合的值(MR = aB 2+cB), 插图为3 K下dMR/dB随磁场的变化; (d) 3 K下, 磁场B与电流I在不同夹角下的磁阻变化曲线, 插图为MR随夹角变化的曲线, 红色实线为使用正弦函数拟合的值

    Figure 5.  (a) BI, the magnetoresistance(MR) curve of 3–220 K; (b) BI, the curve of MR versus temperature at B = 7 T , the insert is the critical point B0 of “convex” MR versus temperature at 100–160 K; (c) BI, the MR versus the magnetic field at 3 K, the black solid line represents the value fitted according to the formula (MR = aB 2+cB), and the insert shows the dMR/dB versus the magnetic field at 3 K; (d) the MR of different angle between the B and I versus the magnetic field B at 3 K, and the insert is the MR versus different angles, the red solid line represents the value fitted according to sine function.

    图 6  (a) 不同温度下Co3Sn2S2的霍尔电阻率ρyx随磁场变化的曲线, 插图为霍尔电阻率测量原理图; (b) 反常霍尔电导率$ {\sigma }_{yx}^{{\rm{A}}} $与霍尔电阻率ρyx随温度变化的曲线; (c) 反常霍尔角$ {\sigma }_{yx}^{{\rm{A}}}/\sigma $与随温度变化的曲线; (d) 载流子浓度n随温度变化曲线; (e) 载流子迁移率μ随温度变化曲线, 插图为ln μ随ln T的变化曲线

    Figure 6.  (a) Hall resistivity ρyx versus the magnetic field of Co3Sn2S2 at different temperatures, the insert is the diagram of Hall resistivity measurement; (b) the temperature dependence of abnormal Hall conductivity $ {\sigma }_{yx}^{{\rm{A}}} $ and Hall resistivity ρyx; (c) the temperature dependence of abnormal Hall angle $ {\sigma }_{yx}^{{\rm{A}}}/\sigma $; (d) the carrier concentration n versus the temperature; (e) the carrier mobility μ versus the temperature, the insert is the ln μ versus ln T.

    图 7  (a) Co3Sn2S2的电导率σ随温度变化的曲线; (b) 塞贝克系数S随温度变化的曲线; (c) 功率因子PF随温度变化的曲线; (d) 使用载流子输运的能带模型计算获得的有效质量m* 随温度变化的曲线

    Figure 7.  Temperature-dependent (a) conductivity σ, (b) Seebeck coefficient S, (c) power factor PF of Co3Sn2S2; (d) effective mass m* calculated according to the energy band model of carrier transport.

    图 8  (a) Co3Sn2S2的归一化饱和磁化强度MS, 归一化矫顽力HC, 归一化反常霍尔电导$ {\sigma }_{yx}^{{\rm{A}}} $, 归一化霍尔电阻率ρyx随温度的变化曲线及归一化ZFC与FC曲线; (b) 归一化塞贝克系数S, 归一化磁阻MR随温度的变化曲线, 插图为lnμ随lnT的变化曲线

    Figure 8.  (a) Temperature-dependent normalized saturation magnetization MS, normalized coercivity HC, normalized anomalous Hall conductivity $ {\sigma }_{yx}^{{\rm{A}}} $, normalized Hall resistivity ρyx and normalized ZFC and FC curves of Co3Sn2S2; (b) temperature-dependent normalized Seebeck coefficient S and normalized magnetoresistance MR, the insert is the lnμ versus lnT

    表 1  使用公式MR = aB 2+cB拟合BI在不同夹角下的MR - B曲线得到的拟合值

    Table 1.  The fitting values of the MR-B curve according to the formula MR = aB 2+cB at different angles between B and I.

    Angle/(°)aca/c
    00.111250.397860.27962
    150.200630.765170.26221
    300.312821.090810.28678
    600.373451.521220.24549
    750.423581.665080.25439
    900.424551.711720.24803
    DownLoad: CSV
    Baidu
  • [1]

    Yan M H, Jin Y C, Hou X F, Guo Y F, Tsaturyan A, Makarova A, Smirnov D, Dedkov Y, Voloshina E 2021 J. Phys. Chem. Lett. 12 9807Google Scholar

    [2]

    Dedkov Y S, Holder M, Molodtsov S, Rosner H 2008 J. Phys. Conf. Ser. 100 072011

    [3]

    Shen J L, Zeng Q Q, Zhang S, Sun H Y, Yao Q S, Xi X K, Wang W H, Wu G S, Shen B G, Liu Q H, Liu E K 2020 Adv. Funct. Mater. 30 2000830Google Scholar

    [4]

    Thakur G S, Vir P, Guin S N, Shekhar C, Weihrich R, Sun Y, Kumar N, Felser C 2020 Chem. Mater. 32 1612Google Scholar

    [5]

    Lachman E, Murphy R A, Maksimovic N, Kealhofer R, Haley S, McDonald R D, Long J R, Analytis J G 2020 Nat. Commun. 11 560Google Scholar

    [6]

    Liu E K, Sun Y, Kumar N, Muchler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süβ V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [7]

    Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, Lei H C 2018 Nat. Commun. 9 3681Google Scholar

    [8]

    Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E K, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 1806622Google Scholar

    [9]

    Papaj M, Fu L 2021 Phys. Rev. B 103 075424Google Scholar

    [10]

    Yang H Y, You W, Wang J L, Huang J W, Xi C Y, Xu X F, Cao C, Tian M L, Xu Z A, Dai J H, Li Y K 2020 Phys. Rev. Mater. 4 024202Google Scholar

    [11]

    Ding L C, Koo J, Xu L C, Li X K, Lu X F, Zhao L X, Wang Q, Yin Q W, Lei H C, Yan B H, Zhu Z W, Behnia K 2019 Phys. Rev. X 9 041061

    [12]

    Okamura Y, Minami S, Kato Y, Fujishiro Y, Kaneko Y, Ikeda J, Muramoto J, Kaneko R, Ueda K, Kocsis V, Kanazawa N, Taguchi Y, Koretsune T, Fujiwara K, Tsukazaki A, Arita R, Tokura Y, Takahashi Y 2020 Nat. Commun. 11 4619Google Scholar

    [13]

    Kassem M A, Tabata Y, Waki T, Nakamura H 2017 Phys. Rev. B 96 014429Google Scholar

    [14]

    Shen J L, Zeng Q Q, Zhang S, Tong W, Ling L S, Xi C Y, Wang Z S, Liu E K, Wang W H, Wu G H, Shen B G 2019 Appl. Phys. Lett. 115 212403Google Scholar

    [15]

    Zhang Q, Okamoto S, Samolyuk G D, Stone M B, Kolesnikov A I, Xue R, Yan J, McGuire M A, Mandrus D, Tennant D A 2021 Phys Rev Lett 127 117201Google Scholar

    [16]

    Wu H C, Sun P J, Hsieh D J, Chen H J, Kakarla D C, Deng L Z, Chu C W, Yang H D 2020 Mater. Today Phys. 12 100189Google Scholar

    [17]

    Lee C, Vir P, Manna K, Shekhar C, Moore J E, Kastner M A, Felser C, Orenstein J 2022 Nat. Commun. 13 3000Google Scholar

    [18]

    Soh J R, Yi C, Zivkovic I, Qureshi N, Stunault A, Ouladdiaf B, Rodriguez-Velamazan J A, Shi Y, Ronnow H M, Boothroyd A T 2022 Phys. Rev. B 105 094435Google Scholar

    [19]

    Guguchia Z, Verezhak J A T, Gawryluk D J, Tsirkin S S, Yin J X, Belopolski I, Zhou H, Simutis G, Zhang S S, Cochran T A, Chang G, Pomjakushina E, Keller L, Skrzeczkowska Z, Wang Q, Lei H C, Khasanov R, Amato A, Jia S, Neupert T, Luetkens H, Hasan M Z 2020 Nat. Commun. 11 559Google Scholar

    [20]

    Nagpal V, Patnaik S 2020 J. Phys. Condens. Matter 32 405602Google Scholar

    [21]

    Geishendorf K, Schlitz R, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein S T B, Thomas A 2019 Appl. Phys. Lett. 114 092403Google Scholar

    [22]

    Ding L C, Koo J, Yi C J, Xu L C, Zuo H K, Yang M, Shi Y G, Yan B H, Behnia K, Zhu Z W 2021 J. Phys. D Appl. Phys. 54 454003Google Scholar

    [23]

    Rathod S, Megha, Lakhani A, Kumar D 2020 J. Solid State Chem. 289 121461Google Scholar

    [24]

    Shama, Gopal R K, Singh Y 2020 J. Magn. Magn. Mater. 502 166547Google Scholar

    [25]

    Yan B, Felser C (Marchetti M C, Sachdev S ed) 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [26]

    Holder M, Dedkov Y S, Kade A, Rosner H, Schnelle W, Leithe-Jasper A, Weihrich R, Molodtsov S L 2009 Phys. Rev. B 79 205116Google Scholar

    [27]

    Lin X, Bud'ko S L, Canfield P C 2012 Philos. Mag. 92 2436Google Scholar

    [28]

    Rathod S, Megha, Lakhani A, Kumar D 2020 AIP Conf. Proc. 2220 060007

    [29]

    Toby B H, Von Dreele R B 2013 J. Appl. Crystallogr. 46 544Google Scholar

    [30]

    Vu T V, Lavrentyev A A, Gabrelian B V, Sabov V I, Sabov M Y, Pogodin A I, Barchiy I E, Fedorchuk A O, Balinska A, Bak Z, Khyzhun O Y, Piasecki M 2020 J. Alloys Compd. 848 156485Google Scholar

    [31]

    Jiang B Y, Zhao J J, Qian Y J, Zhang S, Qiang X B, Wang L J Y, Bi R, Fan J W, Lu H Z, Liu E K, Wu X S 2022 Phys. Rev. Lett. 129 056601Google Scholar

    [32]

    Kassem M A, Tabata Y, Waki T, Nakamura H 2016 J. Phys. Soc. Jpn. 85 064706Google Scholar

    [33]

    Liu C, Yi C J, Wang X Y, Shen J L, Xie T, Yang L, Fennel T, Stuhr U, Li S L, Weng H M, Shi Y G, Liu E K, Luo H Q 2021 Sci. China Phys. Mech. Astron. 64 257511Google Scholar

    [34]

    Hu J, Kan X, Chen Z, Zheng G, Ma Y 2022 J. Am. Ceram. Soc. 105 4827Google Scholar

    [35]

    Wang J, Luo F, Zhu C, Zhang S, Yang Z, Wang J F, He X, Zhang Y, Sun Z G 2022 J. Appl. Phys. 132 135103Google Scholar

    [36]

    Abrikosov A A 2000 Europhys. Lett. 49 789Google Scholar

    [37]

    Shama, Singh R K 2019 AIP Conf. Proc. 2115 030454

    [38]

    Dos Reis R D, Ajeesh M O, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M, Hassinger E 2016 New J. Phys. 18 085006Google Scholar

    [39]

    Wang J, Zhu C, Luo F, Wang J F, He X, Zhang Y, Liu H X, Sun Z G 2023 ACS Appl. Mater. Interfaces 15 8105Google Scholar

    [40]

    Fivaz R, Mooser E 1964 Phys. Rev. 136 A833Google Scholar

    [41]

    Liu Y, Stavitski E, Attenkofer K, Petrovic C 2018 Phys. Rev. B 97 165415Google Scholar

    [42]

    Geishendorf K, Vir P, Shekhar C, Felser C, Facio J I, van den Brink J, Nielsch K, Thomas A, Goennenwein S T B 2020 Nano Lett. 20 300Google Scholar

    [43]

    Mangelis P, Vaqueiro P, Jumas J C, da Silva I, Smith R I, Powell A V 2017 J. Solid State Chem. 251 204Google Scholar

    [44]

    Zhu C, Wang J, Luo F, Zhang S, Wang J F, Zhang Y, Liu H X, Sun Z G 2022 ACS Appl. Mater. Interfaces 14 38854Google Scholar

  • [1] Fan Yi-Jie, Zhang Ruan, Chen Yu, Cai Xing-Han. Tuning magnetoresistance of chromium chloride tunnel junction through the interface and multi-field effect. Acta Physica Sinica, 2024, 73(13): 137302. doi: 10.7498/aps.73.20240431
    [2] Ke Shao-Qiu, Ye Xian-Feng, Zhang Hao-Jun, Nie Xiao-Lei, Chen Tian-Tian, Liu Cheng-Shan, Zhu Wan-Ting, Wei Ping, Zhao Wen-Yu. xFe/Bi0.5Sb1.5Te3 thermoelectromagnetic films with coexistence of positive and negative magnetoresistance. Acta Physica Sinica, 2024, 73(22): 227301. doi: 10.7498/aps.73.20240701
    [3] Hu Shi-Lin, Liu Jun-Hua, Deng Zhi-Xiong, Xiao Wen, Yang Zhan, Chen Kai, Liao Zhao-Liang. Anomalous Hall effect in Pt/La0.67Sr0.33MnO3 heterojunctions. Acta Physica Sinica, 2023, 72(9): 097503. doi: 10.7498/aps.72.20221852
    [4] Liu Xiao-Wei, Xiong Jun-Lin, Wang Li-Zheng, Liang Shi-Jun, Cheng Bin, Miao Feng. Giant coercivity in single crystal Ta3FeS6 film. Acta Physica Sinica, 2022, 71(12): 127503. doi: 10.7498/aps.71.20220699
    [5] Qiang Xiao-Bin, Lu Hai-Zhou. Quantum transport in topological matters under magnetic fields. Acta Physica Sinica, 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [6] Yang Meng, Bai He, Li Gang, Zhu Zhao-Zhao, Zhu Yun, Su Jian, Cai Jian-Wang. Epitaxial growth of Ho3Fe5O12 films with perpendicular magnetic anisotropy and spin transport properties in Ho3Fe5O12/Pt heterostructures. Acta Physica Sinica, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [7] He Bin, He Xiong, Liu Guo-Qiang, Zhu Can, Wang Jia-Fu, Sun Zhi-Gang. Memristive and magnetoresistance effects of SnSe2. Acta Physica Sinica, 2020, 69(11): 117301. doi: 10.7498/aps.69.20200160
    [8] Ju Hai-Lang, Wang Hong-Xin, Cheng Peng, Li Bao-He, Chen Xiao-Bai, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy study of CoFeB/Ni multilayers by anomalous Hall effect. Acta Physica Sinica, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [9] Zhang Shu-Ling, Chen Wei-Ye, Zhang Yong. Asymmetric giant magnetoimpedance of Co-rich melt-extraction microwires. Acta Physica Sinica, 2015, 64(16): 167501. doi: 10.7498/aps.64.167501
    [10] Ju Hai-Lang, Xiang Ping-Ping, Wang Wei, Li Bao-He. Enhancement of perpendicular magnetic anisotropy and thermal stability in Co/Ni multilayers by MgO/Pt interfaces. Acta Physica Sinica, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [11] Ju Hai-Lang, Li Bao-He, Wu Zhi-Fang, Zhang Fan, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect. Acta Physica Sinica, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [12] Wei Lai-Ming, Zhou Yuan-Ming, Yu Guo-Lin, Gao Kuang-Hong, Liu Xin-Zhi, Lin Tie, Guo Shao-Ling, Dai Ning, Chu Jun-Hao, Austing David Guy. Effective g-factor in high-mobility InGaAs/InP Quantum well. Acta Physica Sinica, 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [13] Ding Bin-Feng, Xiang Feng-Hua, Wang Li-Ming, Wang Hong-Tao. Amending the ferromagnetic properties of Ga0.94Mn0.06As films by He+ irradiation. Acta Physica Sinica, 2012, 61(4): 046105. doi: 10.7498/aps.61.046105
    [14] Liu Na, Wang Hai, Zhu Tao. Perpendicular magnetic anisotropy in the CoFeB/Pt multilayers by anomalous Hall effect. Acta Physica Sinica, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [15] Zhang Shu-Ling, Sun Jian-Fei, Xing Da-Wei. Influence of field annealing on giant magneto-impedance effect of Co-based melt extraction amorphous wires. Acta Physica Sinica, 2010, 59(3): 2068-2072. doi: 10.7498/aps.59.2068
    [16] Wang Jing-Ping, Meng Jian. Tunneling magnetoresistance of Fe3O4 compacts prepared in magnetic field. Acta Physica Sinica, 2008, 57(2): 1197-1201. doi: 10.7498/aps.57.1197
    [17] Nie Ying, Sui Yu, Song Xiu-Dan, Wang Xian-Jie, Cheng Jin-Guang, Qian Zheng-Nan, Su Wen-Hui. Influence of the compacting pressure on the transport properties of CrO2 at low temperatures. Acta Physica Sinica, 2006, 55(6): 3038-3042. doi: 10.7498/aps.55.3038
    [18] Zhu Bo, Gui Yong-Sheng, Zhou Wen-Zheng, Shang Li-Yan, Guo Shao-Ling, Chu Jun-Hao, Lü Jie, Tang Ning, Shen Bo, Zhang Fu-Jia. The weak antilocalization and localization phenomenon in AlGaN/GaN two-dimensional electron gas. Acta Physica Sinica, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [19] GUO ZHONG-CHENG, ZHENG PING, WANG NAN-LIN, CHEN ZHAO-JIA, Y. MAENO, Z. Q. MAO. THE c-AXIS MAGNETORESISTANCE STUDY IN THE NORMAL-STATE Sr2RuO4. Acta Physica Sinica, 2001, 50(9): 1824-1828. doi: 10.7498/aps.50.1824
    [20] HUANG CHII-SHENG, WU CZU-CHIANG, TIAN ZHUNG-IN. ELECTRICAL CONDUCTIVITY, HALL EFFECT AND MAGNETORESISTANCE EFFECT OF InSb UNDER TEMPERATURES 80-500°K. Acta Physica Sinica, 1964, 20(5): 418-428. doi: 10.7498/aps.20.418
Metrics
  • Abstract views:  3766
  • PDF Downloads:  174
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2023
  • Accepted Date:  24 June 2023
  • Available Online:  06 July 2023
  • Published Online:  05 September 2023

/

返回文章
返回
Baidu
map