Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Ti4+ doping on magnetism and magnetodielectric properties of Ca3Co2O6

Wang Ming-Hao Gong Gao-Shang Zhang Hui-Jun He Shi-Yue Liu Ruo-Shui Wang Li-Chen Yang Shu-Xian

Citation:

Effect of Ti4+ doping on magnetism and magnetodielectric properties of Ca3Co2O6

Wang Ming-Hao, Gong Gao-Shang, Zhang Hui-Jun, He Shi-Yue, Liu Ruo-Shui, Wang Li-Chen, Yang Shu-Xian
PDF
HTML
Get Citation
  • As a quasi-one-dimensional spin frustrated material, Ca3Co2O6 has a series of interesting physical properties such as low-temperature spin freezing and multiple magnetized steps due to its unique structure. The magnetic properties of Ca3Co2O6 mainly come from Co ions, and the doping of different elements at the Co site has a great effect on the magnetic structure of Ca3Co2O6. At present, the magnetic research of Ca3Co2O6 and its related compounds mainly focuses on exploring the influence of other elements replacing Co sites. For example, non-magnetic Sc3+ can dilute the intrachain ferromagnetic exchange, while the doping of magnetic ions Mn4+, Fe3+ or Cr3+ can inhibit the intrachain ferromagnetic interaction and enhance the antiferromagnetic interchain interaction. Doping Ti4+ ions, which are high-valence non-magnetic ions, not only dilutes the magnetic interaction of Ca3Co2O6, but also changes the valence state of cobalt ions. i.e. it can convert part of Co3+ ions into Co2+ ions. Therefore, comparing with other doped ions, their introduction may have a more significant effect on the magnetoelectric properties of Ca3Co2O6. In this study, a series of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) polycrystalline samples is prepared by sol-gel method. Their magnetic, dielectric and magnetodielectric properties are measured. The XRD patterns show that a small number of Ti4+ ions do not change the crystal structure of Ca3Co2O6. Due to the destruction of the long-range ferromagnetic correlation of Ca3Co2O6 by non-magnetic Ti4+ ions, the ferromagnetic interaction is inhibited to some extent. Because Ti4+ ions are non-magnetic ions, they cannot form antiferromagnetic coupling with Co ions, resulting in the decrease of the Curie-Weiss temperature(θ). The positive θ value and exchange constant still indicate that the ferromagnetic interaction is dominant in Ti4+ doped Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) samples. The substitution of non-magnetic ions Ti4+ for Co3+ ions also makes the effective magnetic moment of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) monotonically decrease from μeff = 5.42μB for x = 0 to μeff = 5.18μB for x = 0.06. Accompanying the introduction of Ti4+ ions, the spin frustration of Ca3Co2O6 is released partly, thus gradually fading the magnetization steps of Ca3Co2O6. As the Ca3Co2O6 is a typical magnetodielectric material, the released spin frustration in Ti4+ doped samples and the variation of the subtle magnetic structure exert a large influence on the magnetodielectric coupling effect of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) compounds.
      Corresponding author: Yang Shu-Xian, sxyang_job@163.com
    • Funds: Project supported by the Science and Technology Research Program of Henan Province, China (Grant No. 242102231072).
    [1]

    Gong G S, Guo J J, Ma Y M, Zhang YP, Wang YQ, Su Y L 2019 J. Magn. Magn. Mater. 482 323Google Scholar

    [2]

    Kudasov Y B, Korshunov A S, Pavlov V N, Maslov D A 2010 J. Low. Temp. Phys. 159 76Google Scholar

    [3]

    Gong G S, Wang M H, Li Z, Duan Y R, Zuo Y Y, Zhou J, Wang Y Q, Su Y L 2024 J. Magn. Magn. Mater. 590 171653Google Scholar

    [4]

    Gong G S, Xu L M, Bai Y M, Wang Y Q, Yuan S L, Liu Y, Tian Z M 2021 Phys. Rev. Mater. 5 034405Google Scholar

    [5]

    Zhou J, Gong G S, Duan Y R, Wang L C, Zuo Y Y, Wang Y Q, Su Y L 2023 J. Solid State Chem. 323 124021Google Scholar

    [6]

    Xu L M, Gong G S, Zhao C W, Song X X, Yuan S L, Tian Z M 2020 J. Phys. Chem. C 124 22656Google Scholar

    [7]

    Ashtar M, Guo J J, Wan Z T, Wang Y Q, Gong G S, Liu Y, Su Y L, Tian Z M 2020 Inorg. Chem. 59 5368Google Scholar

    [8]

    Maignan A, Michel C, Masset A C, Martin C, Raveau B 2000 Eur. Phys. J. B 15 657Google Scholar

    [9]

    Fjellvåg H, Gulbrandsen E, Aasland S, Olsen A, Hauback B C 1996 J. Solid. State. Chem. 124 190Google Scholar

    [10]

    Bellido N, Simon C, Maignan A 2008 Phys. Rev. B 77 054430Google Scholar

    [11]

    Kudasov Y B, Korshunov A S, Pavlov V N, Maslov D A 2011 Phys. Rev. B 83 092404Google Scholar

    [12]

    Takubo K, Mizokawa T, Hirata S, Son J, Fujimori A, Topwal D, Sarma D D, Rayaprol S, Sampathkumaran E 2005 Phys. Rev. B 71 073406Google Scholar

    [13]

    Shimizu Y, Horibe M, Nanba H, Takami T, Itoh M 2010 Phys. Rev. B 82 094430Google Scholar

    [14]

    Allodi G, Santini P, Carretta S, Agrestini S, Mazzoli C, Bombardi A, Lees M R, Renzi R D 2014 Phys. Rev. B 89 104401Google Scholar

    [15]

    Allodi G, Renzi R D, Agrestini S, Mazzoli C, Lees M R 2011 Phys. Rev. B 83 104408Google Scholar

    [16]

    Hardy V, Lambert S, Lees M R, Paul D M 2003 Phys. Rev. B 68 014424Google Scholar

    [17]

    Hardy V, Flahaut D, Lees M, Petrenko O 2004 Phys. Rev. B 70 214439Google Scholar

    [18]

    Burnus T, Hu Z, Haverkort M W, Cezar J C, Flahaut D, Hardy V, Maignan A, Brookes N B, Tanaka A, Hsieh H H, Lin H, Chen C T, Tjeng L H 2006 Phys. Rev. B 74 245111Google Scholar

    [19]

    Agrestini S, Mazzoli C, Bombardi A, Lees M R 2008 Phys. Rev. B 77 140403Google Scholar

    [20]

    Bisht G S, Pal D 2022 J. Phys-Condens. Mat. 34 285803Google Scholar

    [21]

    Agrestini S, Chapon L C, Daoud-Aladine A, Schefer J, Gukasov A, Mazzoli C, Lees M R, Petrenko O A 2008 Phys. Rev. L 101 097207Google Scholar

    [22]

    Kamiya Y, Batista C D 2012 Phys. Rev. L 109 067204Google Scholar

    [23]

    Flahaut D, Maignan A, Hébert S, Martin C, Retoux R, Hardy V 2004 Phys. Rev. B 70 094418Google Scholar

    [24]

    Hervoches C H, Fredenborg V M, Kjekshus A, Fjellvåg H, Hauback B C 2007 J. Solid. State. Chem. 180 834Google Scholar

    [25]

    Das R, Dang N T, Kalappattil V, Madhogaria R P, Kozlenko D P, Kichanov S E, Lukin E V, A Rutkaukas V, Nguyen T P T, Thao L T P, Bingham N S, Srikanth H, Phan M H 2021 J. Alloys. Compd. 851 156897Google Scholar

    [26]

    Gong G S, Shi C F, Zerihun G, Guo J J, Wang Y Q, Qiu Y, Su Y L 2020 Mater. Res. Bull. 130 110934Google Scholar

    [27]

    Kim J W, Mun E D, Ding X, Hansen A, Jaime M, Harrison N, Yi H T, Chai Y, Sun Y, Cheong S W, Zapf V S 2018 Phys. Rev. B 98 024407Google Scholar

    [28]

    Duan Y R, Gong G S, Wang M H, Zhou J, Li Z, Zuo Y Y, Wang L C, Wang Y Q, Su Y L, Zhang H J 2023 Physics B 671 415429Google Scholar

    [29]

    Gong G S, Wang Y Q, Su Y L, Liu D W, Zerihun G, Qiu Y 2018 Mater. Res. Bull. 99 419Google Scholar

  • 图 1  室温下Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) 的XRD衍射图谱

    Figure 1.  XRD patterns of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) at room temperature.

    图 2  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)在H = 1000 Oe磁场条件下的ZFC和FC曲线

    Figure 2.  The zero-field cooling (ZFC) and field cooling (FC) magnetization curves for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) in H = 1000 Oe.

    图 3  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)磁化曲线的居里-外斯拟合结果

    Figure 3.  Temperature dependence of the inverse susceptibility for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06), the solid lines represent the Curie-Weiss fitting.

    图 4  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)摩尔磁化率与温度的乘积随温度的变化曲线

    Figure 4.  The temperature dependent $\chi$T curves for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06).

    图 5  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) 样品(a)在2 K下的磁化曲线和(b)一阶导数dM/dH曲线, 虚线表示的是磁化台阶的位置

    Figure 5.  (a) The M-H curves of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) at 2 K and (b) the differential of the magnetization to the magnetic field (dM/dH).

    图 6  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) 样品(a)在10 K下的起始磁化曲线和(b)一阶导数dM/dH曲线, 虚线表示磁化台阶的位置

    Figure 6.  (a) The M-H curves of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) at 10 K and (b) the differential of the magnetization to the magnetic field (dM/dH).

    图 7  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)的介电常数在不同频率下随温度的变化

    Figure 7.  Temperature dependence of permittivity for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) under different frequencies.

    图 8  不同频率下Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)介电损耗随温度的变化

    Figure 8.  Temperature dependence of loss factor for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) samples.

    图 9  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)在(a) T = 5 K和(b) T =10 K条件下相对介电常数随磁场的变化

    Figure 9.  The dielectric constant as function of the magnetic field for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) measured at (a) T = 5 K and (b) T =10 K.

    Baidu
  • [1]

    Gong G S, Guo J J, Ma Y M, Zhang YP, Wang YQ, Su Y L 2019 J. Magn. Magn. Mater. 482 323Google Scholar

    [2]

    Kudasov Y B, Korshunov A S, Pavlov V N, Maslov D A 2010 J. Low. Temp. Phys. 159 76Google Scholar

    [3]

    Gong G S, Wang M H, Li Z, Duan Y R, Zuo Y Y, Zhou J, Wang Y Q, Su Y L 2024 J. Magn. Magn. Mater. 590 171653Google Scholar

    [4]

    Gong G S, Xu L M, Bai Y M, Wang Y Q, Yuan S L, Liu Y, Tian Z M 2021 Phys. Rev. Mater. 5 034405Google Scholar

    [5]

    Zhou J, Gong G S, Duan Y R, Wang L C, Zuo Y Y, Wang Y Q, Su Y L 2023 J. Solid State Chem. 323 124021Google Scholar

    [6]

    Xu L M, Gong G S, Zhao C W, Song X X, Yuan S L, Tian Z M 2020 J. Phys. Chem. C 124 22656Google Scholar

    [7]

    Ashtar M, Guo J J, Wan Z T, Wang Y Q, Gong G S, Liu Y, Su Y L, Tian Z M 2020 Inorg. Chem. 59 5368Google Scholar

    [8]

    Maignan A, Michel C, Masset A C, Martin C, Raveau B 2000 Eur. Phys. J. B 15 657Google Scholar

    [9]

    Fjellvåg H, Gulbrandsen E, Aasland S, Olsen A, Hauback B C 1996 J. Solid. State. Chem. 124 190Google Scholar

    [10]

    Bellido N, Simon C, Maignan A 2008 Phys. Rev. B 77 054430Google Scholar

    [11]

    Kudasov Y B, Korshunov A S, Pavlov V N, Maslov D A 2011 Phys. Rev. B 83 092404Google Scholar

    [12]

    Takubo K, Mizokawa T, Hirata S, Son J, Fujimori A, Topwal D, Sarma D D, Rayaprol S, Sampathkumaran E 2005 Phys. Rev. B 71 073406Google Scholar

    [13]

    Shimizu Y, Horibe M, Nanba H, Takami T, Itoh M 2010 Phys. Rev. B 82 094430Google Scholar

    [14]

    Allodi G, Santini P, Carretta S, Agrestini S, Mazzoli C, Bombardi A, Lees M R, Renzi R D 2014 Phys. Rev. B 89 104401Google Scholar

    [15]

    Allodi G, Renzi R D, Agrestini S, Mazzoli C, Lees M R 2011 Phys. Rev. B 83 104408Google Scholar

    [16]

    Hardy V, Lambert S, Lees M R, Paul D M 2003 Phys. Rev. B 68 014424Google Scholar

    [17]

    Hardy V, Flahaut D, Lees M, Petrenko O 2004 Phys. Rev. B 70 214439Google Scholar

    [18]

    Burnus T, Hu Z, Haverkort M W, Cezar J C, Flahaut D, Hardy V, Maignan A, Brookes N B, Tanaka A, Hsieh H H, Lin H, Chen C T, Tjeng L H 2006 Phys. Rev. B 74 245111Google Scholar

    [19]

    Agrestini S, Mazzoli C, Bombardi A, Lees M R 2008 Phys. Rev. B 77 140403Google Scholar

    [20]

    Bisht G S, Pal D 2022 J. Phys-Condens. Mat. 34 285803Google Scholar

    [21]

    Agrestini S, Chapon L C, Daoud-Aladine A, Schefer J, Gukasov A, Mazzoli C, Lees M R, Petrenko O A 2008 Phys. Rev. L 101 097207Google Scholar

    [22]

    Kamiya Y, Batista C D 2012 Phys. Rev. L 109 067204Google Scholar

    [23]

    Flahaut D, Maignan A, Hébert S, Martin C, Retoux R, Hardy V 2004 Phys. Rev. B 70 094418Google Scholar

    [24]

    Hervoches C H, Fredenborg V M, Kjekshus A, Fjellvåg H, Hauback B C 2007 J. Solid. State. Chem. 180 834Google Scholar

    [25]

    Das R, Dang N T, Kalappattil V, Madhogaria R P, Kozlenko D P, Kichanov S E, Lukin E V, A Rutkaukas V, Nguyen T P T, Thao L T P, Bingham N S, Srikanth H, Phan M H 2021 J. Alloys. Compd. 851 156897Google Scholar

    [26]

    Gong G S, Shi C F, Zerihun G, Guo J J, Wang Y Q, Qiu Y, Su Y L 2020 Mater. Res. Bull. 130 110934Google Scholar

    [27]

    Kim J W, Mun E D, Ding X, Hansen A, Jaime M, Harrison N, Yi H T, Chai Y, Sun Y, Cheong S W, Zapf V S 2018 Phys. Rev. B 98 024407Google Scholar

    [28]

    Duan Y R, Gong G S, Wang M H, Zhou J, Li Z, Zuo Y Y, Wang L C, Wang Y Q, Su Y L, Zhang H J 2023 Physics B 671 415429Google Scholar

    [29]

    Gong G S, Wang Y Q, Su Y L, Liu D W, Zerihun G, Qiu Y 2018 Mater. Res. Bull. 99 419Google Scholar

  • [1] Li Zhu-Bai, Wei Lei, Zhang Zhen, Duan Dong-Wei, Zhao Qian. Macroeffect of magnons and thermal fluctiation on magnetization reversal. Acta Physica Sinica, 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [2] Wang Hong-Zhang, Li Yu-Long, Xu Tie-Quan, Zhu Zi-Qing, Ma Ping, Wang Yue, Gan Zi-Zhao. Fabrication and characterization of YBa2Cu3O7–$_{ \delta}$ step-edge Josephson junctions on MgO substrate for high-temperature superconducting quantum interference devices. Acta Physica Sinica, 2021, 70(3): 037401. doi: 10.7498/aps.70.20201291
    [3] Luo Xu, Zhu Hai-Yan, Ding Ya-Ping. A modified model of magneto-mechanical effect on magnetization in ferromagnetic materials. Acta Physica Sinica, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [4] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [5] Zhang Dian-Cheng, Zhang Ying, Li Xiao-Kang, Jia Feng-Dong, R. Li, Zhong Zhi-Ping. Electron correlation effects in even Rydberg series converging to 4f13(2F7/2o)6s(7/2, 1/2)4o and 4f13(2F7/2o)6s(7/2, 1/2)3o of thulium atom. Acta Physica Sinica, 2018, 67(18): 183102. doi: 10.7498/aps.67.20180797
    [6] Zhang Xin, Zhang Xiao-Zhong, Tan Xin-Yu, Yu Yi, Wan Cai-Hua. Enhancing photovoltaic effect of Co2-C98/Al2O3/Si heterostructures by Al2O3. Acta Physica Sinica, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [7] Dong Hao, Ren Min, Zhang Lei, Deng Ning, Chen Pei-Yi. Thermal effect in current induced magnetic switching. Acta Physica Sinica, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [8] Tang Zhen-Kun, Wang Ling-Ling, Tang Li-Ming, You Kai-Ming, Zou Bing-Suo. Spin polarized transport of two-dimensional electron gas through step-magnetic barrier structure. Acta Physica Sinica, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [9] Ren Min, Zhang Lei, Hu Jiu-Ning, Deng Ning, Chen Pei-Yi. A macroscopic model of current-induced magnetization switching based on magnetic dynamic equation. Acta Physica Sinica, 2007, 56(5): 2863-2867. doi: 10.7498/aps.56.2863
    [10] Li Qi, He Qing, Wang Hang-Dong, Yang Jing-Hu, Du Jian-Hua, Fang Ming-Hu. The element substitution effect of Co in Sr2Fe1-xCoxMoO6 system. Acta Physica Sinica, 2006, 55(11): 6113-6117. doi: 10.7498/aps.55.6113
    [11] WANG ZHI-HONG, CAI JIAN-WANG, SHEN BAO-GEN, ZHAO JIAN-GAO, ZHAN WEN-SHAN. STEP MAGNETIZATION AND COLOSSAL MAGNETORESIS-TANCE IN SPIN GLASS MANGANITES La0.67Ca0.33(Mn,Fe)O3. Acta Physica Sinica, 1999, 48(4): 757-762. doi: 10.7498/aps.48.757
    [12] Zhang Hong-Wei, Zhang Wen-Yong, Yan A-Ru, Shen Bao-Gen. Magnetization Reveral Behavior and Magnetic Viscosity of Nanocomposite Nd3.6Pr5.4Fe83Co3B5. Acta Physica Sinica, 1999, 48(13): 211-216. doi: 10.7498/aps.48.211
    [13] XU MING-XIANG, JIAO ZHENG-KUAN. STUDY OF GIANT MAGNETORESISTANCE IN THE In-SUBSTITUTED (La2/3Ca1/3)(Mn(3-2x)/3In2x/3)O3 SYSTEM. Acta Physica Sinica, 1998, 47(6): 1006-1011. doi: 10.7498/aps.47.1006
    [14] Qin Meng-Jun, Ji He-Lin, Shi Zhi-Xiang, Jin Xin, Yao Xi-Xian, Fan Zhan-Guo, Shan Yu-Qiao. . Acta Physica Sinica, 1995, 44(2): 328-336. doi: 10.7498/aps.44.328
    [15] WANG QIANG-HUA, WANG WEI, YAO XI-XIAN. RETURNING EFFECT AND THE FIRST ZERO FIELD STEP IN AN ANNULAR JOSEPHSON JUNCTION. Acta Physica Sinica, 1992, 41(1): 115-122. doi: 10.7498/aps.41.115
    [16] DING SHI-YING, SHI KE-XIN, ZENG CHAO-YANG, YU ZHENG, SHI ZHI-XIANG, QIU LI. TIME DEPENDENT CRITICAL CURRENT AT ZERO FIELD FOR SINTERED Tl2Ba2Ca2Cu3Oy SUPERCONDUCTOR. Acta Physica Sinica, 1991, 40(6): 985-989. doi: 10.7498/aps.40.985
    [17] DU YOU-WEI, QIU ZI-QIANG, TANG HUAN, J. C. WALKER. M?SSBAUER STUDY OF MAGNETIC ORDERING IN YBa2Cu3O7-δ. Acta Physica Sinica, 1990, 39(3): 472-478. doi: 10.7498/aps.39.472
    [18] HE ZHEN-HUI, CHEN ZU-YAO, ZHANG HAN, ZHANG QI-RUI. THE DIFFERENCE OF DOPING EFFECTS BETWEEN YBa2Cu3-xCoxOy AND YBa2Cu3-xZnxOy. Acta Physica Sinica, 1989, 38(1): 60-67. doi: 10.7498/aps.38.60
    [19] Luo He-lie, Wen Yi-ting, Sun Ke, Feng Yuan-bing, Huang Xi-cheng. SURFACE EFFECTS ON SATURATION MAGNETIZATION OF FINE γ-Fe2O3 PARTICLES. Acta Physica Sinica, 1983, 32(6): 812-818. doi: 10.7498/aps.32.812
    [20] LI SHI, ZANG PEI-QUN, JI GUI-QUAN, LUO HE-LIE, SUN KE. STUDY ON THE M?SSBAUER EFFECT OF γ-Fe2O3 POWDER WITH CoxFe3-xO4-DOPED COATING. Acta Physica Sinica, 1981, 30(1): 120-123. doi: 10.7498/aps.30.120
Metrics
  • Abstract views:  987
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2024
  • Accepted Date:  16 July 2024
  • Available Online:  31 July 2024
  • Published Online:  05 September 2024

/

返回文章
返回
Baidu
map