-
Equilibrium structures of the GeTe and GeSe ground state molecules are obtained by employing the local spin density approximation method with 6-311++G** basis sets for Ge and SDB-cc-pVTZ for Te and Se. Also obtained are the equilibrium geometry, the highest occupied molecular orbital(HOMO) energy level, the lowest unoccupied molecular orbital(LUMO)energy level, the energy gap, the harmonic frequency and the infrared intensity of GeTe and GeSe ground state molecules under different electric fields. On the basis of the above calculation, the excited states of GeTe and GeSe molecules under different electric fields are also investigated by using the single-excitation configuration interaction-local spin density approximation method. The results show that the equilibrium internuclear distance and the intensity of infrared are found to increase, but the total energy and harmonic frequency are proved to decrease with the increase of positive direction electric field. The HOMO energy EH of GeTe molecule is higher than that of GeSe molecule under electric fields ranging from 0 to 2.05691010 V m-1. For GeTe and GeSe molecules, their difference in EH gradually increases with the increase of positive direction electric field. The LUMO energy EL of GeTe molecule is lower than that of GeSe molecule, and their LUMO energies are found to increase with the increase of positive direction electric field. The energy gap of GeTe is low than that of GeSe, and their energy gaps always decrease with the increase the negative direction electric field. The magnitude and the direction of the external electric field have important effects on excitation energy, oscillator strength and wavelength.
-
Keywords:
- GeTe /
- GeSe /
- external electric field /
- excited states
[1] Akifumi O, Ichiro S, Yasuhiko F, Nobuo M, Shunji S 1997 Phys. Rev. B 56 7935
[2] [3] White M V G, Rosenberg R A, Tlee S, Shirley D A 1979 J. Electron Spectrosc. Relat. Phenom. 17 323
[4] [5] Drummond G, Barrow R F 1952 Proc. Phys. Soc. A 65 277
[6] [7] Rathor A, Sharma V, Heda N L, Sharma Y, Ahuja B L 2008 Rad. Phys.Chem. 77 391
[8] [9] Hosokawayk S, Hariy Y, Kouchiy T, Onoy I, Satoy H, Taniguchiy M, Hirayay A, Takataz Y, Kosugiz N, Watanabex M 1998 J. Phys. Condens. Matter 10 1931
[10] Nikolic P M 1969 J. Phys. D 2 383
[11] [12] Eymard R, Otto A 1977 Phys. Rev. B 16 1616
[13] [14] Colin R, Drowart J 1968 J. Phys. Chem. 68 428
[15] [16] Kemeny P C, Azoulay J, Cardona M, Ley L 1977 Il Nuovo. Cimento B 39 709
[17] [18] [19] Akola J, Jones R O 2007 Phys. Rev. B 76 235201
[20] Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M, Yagumo-Nakamachi M 1991 J. Appl. Phys. 69 2849
[21] [22] O'Hare P A G, Susman S, Volin K J 1989 J. Chem. Thermodyn. 21 827
[23] [24] [25] Jalbout A F, Li X H, Abou-Rachid H 2007 Int. J. Quantum Chem. 107 522
[26] [27] Chen X J, Ma M Z, Luo S Z, Zhu Z H 2004 J. At. Mol. Phys. 21 19 (in Chinese) [陈晓军、马美仲、罗顺忠、朱正和 2004 原子与分子 21 19]
[28] Xu G L, Xiao X H, Liu Y F, Sun J F, Zhu Z H 2007 Acta Phys. Chim. Sin. 23 746 (in Chinese) [徐国亮、肖小红、刘玉芳、孙金锋、朱正和 2007 物理化学学报 23 746]
[29] [30] [31] Xu G L, Xia Y Z, Liu X F, Zhang X Z, Liu Y F 2010 Acta Phys. Sin. 59 7762 (in Chinese) [徐国亮、夏要争、刘雪峰、张现周、刘玉芳 2010 59 7762]
[32] Frisch M J, Trucks G W, Schegd H B 2003 Gaussian 03, Revision B03 (Pittsburgh: Gaussian Inc.)
[33] [34] [35] Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408
[36] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p238
[37] [38] Xie A D, Meng D Q, Luo D L, Ma M Z, Zhu Z H 2007 J. At. Mol. Phys. 24 387 (in Chinese) [谢安东、蒙大桥、罗德礼、马美仲、朱正和 2007 原子与分子 24 387]
[39] [40] [41] Yan Z Z 2006 Electro-Optics Technol. 47 8 (in Chinese) [严增濯 2006 光电技术 47 8]
-
[1] Akifumi O, Ichiro S, Yasuhiko F, Nobuo M, Shunji S 1997 Phys. Rev. B 56 7935
[2] [3] White M V G, Rosenberg R A, Tlee S, Shirley D A 1979 J. Electron Spectrosc. Relat. Phenom. 17 323
[4] [5] Drummond G, Barrow R F 1952 Proc. Phys. Soc. A 65 277
[6] [7] Rathor A, Sharma V, Heda N L, Sharma Y, Ahuja B L 2008 Rad. Phys.Chem. 77 391
[8] [9] Hosokawayk S, Hariy Y, Kouchiy T, Onoy I, Satoy H, Taniguchiy M, Hirayay A, Takataz Y, Kosugiz N, Watanabex M 1998 J. Phys. Condens. Matter 10 1931
[10] Nikolic P M 1969 J. Phys. D 2 383
[11] [12] Eymard R, Otto A 1977 Phys. Rev. B 16 1616
[13] [14] Colin R, Drowart J 1968 J. Phys. Chem. 68 428
[15] [16] Kemeny P C, Azoulay J, Cardona M, Ley L 1977 Il Nuovo. Cimento B 39 709
[17] [18] [19] Akola J, Jones R O 2007 Phys. Rev. B 76 235201
[20] Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M, Yagumo-Nakamachi M 1991 J. Appl. Phys. 69 2849
[21] [22] O'Hare P A G, Susman S, Volin K J 1989 J. Chem. Thermodyn. 21 827
[23] [24] [25] Jalbout A F, Li X H, Abou-Rachid H 2007 Int. J. Quantum Chem. 107 522
[26] [27] Chen X J, Ma M Z, Luo S Z, Zhu Z H 2004 J. At. Mol. Phys. 21 19 (in Chinese) [陈晓军、马美仲、罗顺忠、朱正和 2004 原子与分子 21 19]
[28] Xu G L, Xiao X H, Liu Y F, Sun J F, Zhu Z H 2007 Acta Phys. Chim. Sin. 23 746 (in Chinese) [徐国亮、肖小红、刘玉芳、孙金锋、朱正和 2007 物理化学学报 23 746]
[29] [30] [31] Xu G L, Xia Y Z, Liu X F, Zhang X Z, Liu Y F 2010 Acta Phys. Sin. 59 7762 (in Chinese) [徐国亮、夏要争、刘雪峰、张现周、刘玉芳 2010 59 7762]
[32] Frisch M J, Trucks G W, Schegd H B 2003 Gaussian 03, Revision B03 (Pittsburgh: Gaussian Inc.)
[33] [34] [35] Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408
[36] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p238
[37] [38] Xie A D, Meng D Q, Luo D L, Ma M Z, Zhu Z H 2007 J. At. Mol. Phys. 24 387 (in Chinese) [谢安东、蒙大桥、罗德礼、马美仲、朱正和 2007 原子与分子 24 387]
[39] [40] [41] Yan Z Z 2006 Electro-Optics Technol. 47 8 (in Chinese) [严增濯 2006 光电技术 47 8]
Catalog
Metrics
- Abstract views: 7313
- PDF Downloads: 849
- Cited By: 0