-
基于铯原子阶梯型6S1/2-6P3/2-8S1/2 (852.3 nm + 794.6 nm)能级系统, 一束波长为852.3 nm的圆偏振光作为抽运光, 将室温下气室中的铯原子由基态6S1/2激发到中间激发态6P3/2并极化, 另一束波长为794.6 nm的线偏振光作为探测光, 其频率在6P3/2—8S1/2态之间扫描, 经过原子气室后差分探测便可获得铯原子激发态6P3/2—8S1/2能级跃迁之间的双色偏振光谱. 实验上系统地测量、分析了抽运光频率失谐、偏振, 以及抽运光与探测光同反向实验构型对双色偏振光谱的影响, 并将其用于794.6 nm半导体激光器的稳频, 锁频之后, 225 s内的残余频率起伏约为0.5 MHz.Two-color polarization spectroscopy (TCPS) of cesium 6S1/2-6P3/2-8S1/2 (852.3 nm + 794.6 nm) ladder-type system in a room-temperature vapor cell are investigated. The frequency of 852.3 nm laser used as a pump beam is locked on one of the hyperfine transitions between the ground state 6S1/2 and excited state 6P3/2 by the saturated absorption spectroscopy technique, which can populate some atoms on the 6P3/2 excited state and induce anisotropy in the atomic medium. The frequency of 794.6 nm laser serving as a probe beam is scanned across the whole 6P3/2→8S1/2 transition to ascertain this anisotropy, and thus the TCPS is obtained. In experiment, we measure and analyse the influence of frequency detuning of 852.3 nm pump laser on TCPS, and especially reveal that some of hyperfine energy levels of intermediate excited state 6P3/2, which has no direct interaction with the 852.3 nm pump laser, are also populated by a small fraction of atoms with a specific speed in the direction of pump laser beam due to Doppler effect, so they also have contribution to the TCPS when the 794.6 nm probe laser is scanned to the resonance transition line between the 6P3/2 and 8S1/2 states after the Doppler frequency shift has been considered. In addition, we prove that the atomic coherence like electromagnetically induced transparency effect obviously results in a narrower line width of TCPS in the case of counter-propagating experimental configuration than that in the case of pump beam co-propagating with the probe beam in the Cs vapor cell. Finally, we apply the TCPS with dispersive shaped feature to frequency stabilization with no modulation, and the frequency fluctuations of 794.6 nm laser are ~0.5 MHz and ~9.2 MHz for the frequency-locking and free running in ~225 s, respectively. The above research work is expected to play a role in precisely measuring the atomic energy level structure and its related hyperfine structure constant (magnetic dipole and electric quadrupole coupling constants), and also in stabilizing the laser frequency to the excited state transition especially for the optical fiber communication, two-color laser cooling/trapping neutral atoms, optical filter, etc.
-
Keywords:
- two-color polarization spectroscopy /
- excited state spectroscopy /
- optical pumping /
- modulation-free laser frequency stabilization
[1] Sun Q Q, Hong Y L, Zhuang W, Liu Z W, Chen J B 2012 Appl. Phys. Lett. 101 211102Google Scholar
[2] Wu S J, Plisson T, Brown R C, Phillips W D, Porto J V 2009 Phys. Rev. Lett. 103 173003Google Scholar
[3] Akulshin A M, Orel A A, McLean R J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 015401Google Scholar
[4] Wang J, Liu H F, Yang G, Yang B D, Wang J M 2014 Phys. Rev. A 90 052505Google Scholar
[5] 任雅娜, 杨保东, 王杰, 杨光, 王军民 2016 65 073103Google Scholar
Ren Y N, Yang B D, Wang J, Yang G, Wang J M 2016 Acta Phys. Sin. 65 073103Google Scholar
[6] Mohapatra K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar
[7] Parniak M, Leszczyński A, Wasilewski W 2016 Appl. Phys. Lett. 108 161103Google Scholar
[8] Sasada H 1992 IEEE Photonics Technol. Lett. 4 1307Google Scholar
[9] Moon H S, Lee W K, Lee L, Kim J B 2004 Appl. Phys. Lett. 85 3965Google Scholar
[10] Yang B D, Zhao J Y, Zhang T C, Wang J M 2009 J. Phys. D: Appl. Phys. 42 085111Google Scholar
[11] Carr C, Adams C S, Weatherill K J 2012 Opt. Lett. 37 118Google Scholar
[12] Yang B D, Wang J, Liu H F, He J, Wang J M 2014 Opt. Commun. 319 174Google Scholar
[13] Wieman C, Hänsch T W 1976 Phys. Rev. Lett. 36 1170Google Scholar
[14] Kulatunga P, Busch H C, Andrews L R, Sukenik C I 2012 Opt. Commun. 285 2851Google Scholar
[15] Noh H R 2012 Opt. Express 20 21784Google Scholar
[16] Cha E H, Jeong T, Noh H R 2014 Opt. Commun. 326 175Google Scholar
[17] Moon H S, Lee L, Kim J B 2008 Opt. Express 16 12163Google Scholar
[18] Becerra F E, Willis R T, Rolston S L, Orozco L A 2009 J. Opt. Soc. Am. B 26 1315Google Scholar
[19] Yang B D, Gao J, Zhang T C, Wang J M 2011 Phys. Rev. A 83 013818Google Scholar
[20] Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803Google Scholar
[21] Yang B D, Liang Q B, He J, Wang J M 2012 Opt. Express 20 11944Google Scholar
[22] Yang B D, Wang J, Wang J M 2016 Chin. Opt. Lett. 14 040201Google Scholar
[23] Song M, Yoon T H 2011 Phys. Rev. A 83 033814Google Scholar
[24] Moon H S 2008 Appl. Opt. 47 1097Google Scholar
-
图 2 实验装置示意图 DL为 852和795 nm光栅外腔反馈半导体激光器, OI 为光隔离器, SAS为饱和吸收光谱装置, PID为比例积分微分放大器, HWP为1/2波片, QWP为1/4波片, M为45°高反镜, PBS为立方偏振分光棱镜, Cs Cell为 25 mm × 50 mm 铯原子泡, DF为双色镜, BD为挡光板, PD为光电探测器
Fig. 2. Schematic diagram of experimental setup for the TCPS. Keys to the figure: DL, external-cavity diode laser; OI, optical isolator; SAS, saturated absorption spectroscopy; PID, proportion-integration-differentiation controller; HWP, half-wave plate; QWP, quarter-wave plate; M, mirror; PBS, polarization beam splitter cube; Cs cell, cesium vapor cell; DF, dichroic filter; BD, beam dump; PD, photodiode.
图 3 同向传输实验构型, 852.3 nm抽运光频率锁于6S1/2 (F = 3)→6P3/2 (F′ = 2, 3, 4)时, 794.6 nm激光作为探测光的TCPS
Fig. 3. The TCPS for the co-propagation configuration when the 794.6 nm probe laser is scanned over the whole 6P3/2→8S1/2 transition, and the frequency of 852.3 nm pump laser is locked on the 6S1/2 (F = 3)→6P3/2 (F' = 2, 3, 4) transition, respectively.
图 4 反向传输实验构型, 852.3 nm抽运光频率锁于6S1/2 (F = 3)→6P3/2 (F' = 2, 3, 4)时, 794.6 nm激光作为探测光的TCPS
Fig. 4. The TCPS for the counter-propagation configuration when the 794.6 nm probe laser is scanned over the whole 6P3/2→8S1/2 transition, and the frequency of 852.3 nm pump laser is locked on the 6S1/2 (F = 3)→6P3/2 (F' = 2, 3, 4) transition, respectively.
图 5 同向传输实验构型, 852.3 nm抽运光频率锁于6S1/2 (F = 4)→6P3/2 (F' = 3, 4, 5)时, 794.6 nm激光作为探测光的双色偏振光谱
Fig. 5. The TCPS for the co-propagation configuration when the 794.6 nm probe laser is scanned, and the frequency of 852.3 nm pump laser is locked on the 6S1/2 (F = 4)→6P3/2 (F' = 3, 4, 5) transition, respectively.
图 6 反向传输实验构型, 852.3 nm抽运光频率锁于6S1/2 (F = 4)—6P3/2 (F' = 3, 4, 5)时, 794.6nm激光作为探测光的双色偏振光谱
Fig. 6. The TCPS for the counter-propagation configuration when the 794.6 nm probe laser is scanned, and the frequency of 852.3 nm pump laser is locked on the 6S1/2(F = 4)→6P3/2(F' = 3, 4, 5) transition, respectively.
-
[1] Sun Q Q, Hong Y L, Zhuang W, Liu Z W, Chen J B 2012 Appl. Phys. Lett. 101 211102Google Scholar
[2] Wu S J, Plisson T, Brown R C, Phillips W D, Porto J V 2009 Phys. Rev. Lett. 103 173003Google Scholar
[3] Akulshin A M, Orel A A, McLean R J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 015401Google Scholar
[4] Wang J, Liu H F, Yang G, Yang B D, Wang J M 2014 Phys. Rev. A 90 052505Google Scholar
[5] 任雅娜, 杨保东, 王杰, 杨光, 王军民 2016 65 073103Google Scholar
Ren Y N, Yang B D, Wang J, Yang G, Wang J M 2016 Acta Phys. Sin. 65 073103Google Scholar
[6] Mohapatra K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar
[7] Parniak M, Leszczyński A, Wasilewski W 2016 Appl. Phys. Lett. 108 161103Google Scholar
[8] Sasada H 1992 IEEE Photonics Technol. Lett. 4 1307Google Scholar
[9] Moon H S, Lee W K, Lee L, Kim J B 2004 Appl. Phys. Lett. 85 3965Google Scholar
[10] Yang B D, Zhao J Y, Zhang T C, Wang J M 2009 J. Phys. D: Appl. Phys. 42 085111Google Scholar
[11] Carr C, Adams C S, Weatherill K J 2012 Opt. Lett. 37 118Google Scholar
[12] Yang B D, Wang J, Liu H F, He J, Wang J M 2014 Opt. Commun. 319 174Google Scholar
[13] Wieman C, Hänsch T W 1976 Phys. Rev. Lett. 36 1170Google Scholar
[14] Kulatunga P, Busch H C, Andrews L R, Sukenik C I 2012 Opt. Commun. 285 2851Google Scholar
[15] Noh H R 2012 Opt. Express 20 21784Google Scholar
[16] Cha E H, Jeong T, Noh H R 2014 Opt. Commun. 326 175Google Scholar
[17] Moon H S, Lee L, Kim J B 2008 Opt. Express 16 12163Google Scholar
[18] Becerra F E, Willis R T, Rolston S L, Orozco L A 2009 J. Opt. Soc. Am. B 26 1315Google Scholar
[19] Yang B D, Gao J, Zhang T C, Wang J M 2011 Phys. Rev. A 83 013818Google Scholar
[20] Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803Google Scholar
[21] Yang B D, Liang Q B, He J, Wang J M 2012 Opt. Express 20 11944Google Scholar
[22] Yang B D, Wang J, Wang J M 2016 Chin. Opt. Lett. 14 040201Google Scholar
[23] Song M, Yoon T H 2011 Phys. Rev. A 83 033814Google Scholar
[24] Moon H S 2008 Appl. Opt. 47 1097Google Scholar
计量
- 文章访问数: 10793
- PDF下载量: 128
- 被引次数: 0