搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度泛函理论的外电场下C5F10O的结构及其激发特性

李亚莎 孙林翔 周筱 陈凯 汪辉耀

引用本文:
Citation:

基于密度泛函理论的外电场下C5F10O的结构及其激发特性

李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀

Structure and excitation characteristics of C5F10O under external electric field based on density functional theory

Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao
PDF
HTML
导出引用
  • 采用密度泛函(DFT)B3LYP/6-311g(d)对C5F10O分子进行几何结构优化, 研究外加电场(0-0.03 a.u., 1 a.u. = 5.142 × 1011 V/m)对分子的几何结构、能量、前线轨道能级、红外光谱的影响. 在相同基组下, 采用TD-DFT方法计算和分析C5F10O的轨道成分和激发特性. 研究表明: 随着电场增加, 5C—15F与4C=16O键能逐渐减小, 键长增大; 13F原子的电荷布居数变化最快, 更容易在外电场力的作用下失去电子; 分子体系势能不断增加, 稳定性逐渐减低; 能隙EG值不断减小, 分子更容易激发到激发态参与到化学反应中. 红外光谱中, 4个吸收峰发生蓝移, 4个吸收峰发生了红移. 使用空穴-电子分析法, 指认了C5F10O分子前8个单重激发态的激发特征. 第一激发态的激发能微小增长, 波长减小, 出现蓝移; 其余激发态的激发能均降低, 波长均变长, 发生红移, 导致C5F10O分子中的电子变得越来越容易激发, 体系的稳定程度减小.
    In this paper, we use the density functional theory (B3LYP) method with 6-311g(d) basis sets to optimize the molecular structure of C5F10O and obtain the stable structure of its ground state. On this basis, the geometric characteristics, energy, frontier orbital energy levels, and infrared spectra of C5F10O under the different external electric fields (from 0 to 0.03 a.u., 1 a.u. = 5.142 × 1011 V/m) are studied by the same method. Under the same basis sets, the orbital composition and excitation characteristics of C5F10O are calculated and analyzed by the TD-DFT method. The conclusions show that as the electric field increases, the bond energy of 5C—15F and 4C=16O gradually decrease, their bond lengths increase. The charge of 13F atoms changes fastest, and it is easier to lose electrons under the action of electric field force. The potential energy of the molecule increases, and the stability gradually decreases. The energy gap EG value continuously decreases, and the molecules are more likely to be excited to participate in the chemical reaction. In the infrared spectrum, four absorption peaks are blue-shifted, and four absorption peaks are red-shifted. The excitation characteristics of the first 8 singlet excited states of the C5F10O are identified by the hole-electron analysis method. The excitation energy of the first excited state increases slightly, and the wavelength decreases, and blue shift occurs. The excitation energy values of the other excited states decrease, their wavelengths increase, and red shifts occur. Because the electrons in C5F10O become easier to excite, the stability of the system is lower.
      通信作者: 李亚莎, liyasha@ctgu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51577105)资助的课题
      Corresponding author: Li Ya-Sha, liyasha@ctgu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577105)
    [1]

    周安春, 高理迎, 冀肖彤, 张名 2018 电网技术 42 3429

    Zhou A C, Gao L Y, Ji X T, Z M 2018 Power Syst Technol 42 3429

    [2]

    Deng Y K, Xiao D M, Chen J 2013 High Voltage Eng 39 2288

    [3]

    Chen X, Yang P Y, Ge G W, Wu Q L, Xie W 2019 Plasma Sci. Technol 21 83

    [4]

    高克利, 颜湘莲, 王浩, 何洁, 李志兵 2018 高电压技术 44 3105

    Gao K L, Yan X L, Wang H, He J, Li B Z 2018 High Voltage Eng 44 3105

    [5]

    Christophorou L G, Olthoff J K 2000 J Phys Chem Ref Data 29 267Google Scholar

    [6]

    肖焓艳, 张晓星, 肖淞, 胡雄雄 2017 电工技术学报 32 20

    Xiao H Y, Zhang X X, Xiao S, Hu X X, 2017 Trans. China Electrotechn. Soc 32 20

    [7]

    张晓星, 田双双, 肖淞, 李祎 2018 电工技术学报 33 2883

    Zhang X X, Tian S S, Xiao S, Li W 2018 Trans. China Electrotechn. Soc 33 2883

    [8]

    肖登明 2016 高压技术 42 1035

    Xiao D M 2016 High Voltage Eng 42 1035

    [9]

    汤峤永, 姚素梅 2018 有机氟工业 4 37

    Tang Q Y, Yao S M 2018 Organo-Fluorine Industry 4 37

    [10]

    Hyrenbach M, Hintzen T, Müller P, John O 2015 23rd International Conference on Electricity Distribution Lyon, June 15−18, 1

    [11]

    Simka P, Ranjan N 2015 19 th International Symposium on High Voltage Engineering Pilsen Czech Republic, August 23-28

    [12]

    Guo Z, Li X W, Li B X, Fu M L, Zhuo R, Wang D B 2019 IEEE Trans. Dielectr. Electr. Insul 26 129Google Scholar

    [13]

    Wada J, Ueta G, Okabe S 2016 IEEE Trans. Dielectr. Electr. Insul 23 838Google Scholar

    [14]

    王小华, 傅熊雄, 韩国辉, 卢彦辉, 李旭旭, 高青青, 荣命哲 2017 高电压技术 43 715

    Wang X H, Fu X X, Han G H, Lu Y H, Li X X, Gao Q Q, Rong M Z 2017 High Voltage Eng 43 715

    [15]

    Märt A, Indrek J, Matti L, Peeter P, Jüri R 2018 J Phys D Appl Phys 51 135205Google Scholar

    [16]

    Stoller P C, Doiron C B, Tehlar D, Simka P, Ranjan N 2017 IEEE Trans. Dielectr. Electr. Insul 24 2712Google Scholar

    [17]

    李兴文, 邓云坤, 姜旭, 赵虎, 卓然, 王邸博, 傅明利 2017 高电压技术 43 708

    Li X W, Deng Y K, Jiang X, Zhao H, Zhuo R, Wang D B, Fu M L 2017 High Voltage Eng 43 708

    [18]

    邓云坤, 马仪, 王达达, 郭泽, 李兴文, 赵虎 2018 电器与能效管理技术 10 40

    Deng Y K, Ma Y, Wang D D, Guo Z, Li X W, Zhao H 2018 Electr. Ene Manag Technol 10 40

    [19]

    马仪, 邓云坤 2018 广东电力 31 44

    Ma Y, Deng Y K 2018 Guangdong Electr Power 31 44

    [20]

    Lei Z C, Zeng F P, Tang J, Wan Z F, Zhang M X, Dai L J 2019 IEEE Access 7 92724Google Scholar

    [21]

    Zhang Y, Zhang X X, Li Y, Li Y L, Chen Q, Zhang G Z, Xiao S, Tang J 2019 RSC Adv 9 18963Google Scholar

    [22]

    Fu Y W, Wang X H, Yang A J, Rong M Z 2019 AIP Adv 9 015318Google Scholar

    [23]

    李庆民, 黄旭炜, 刘涛, 闫江燕, 王兆东, 张颖, 鲁旭 2016 电工技术学报 31 1Google Scholar

    Li Q M, Huang X W, Liu T, Yan J Y, Wang Z D, Zhang Y, Lu X 2016 Trans. China Electrotechn. Soc 31 1Google Scholar

    [24]

    Frish M J, Trucks G W, Schlegal H B 2010 Gaussian 09, Revision B01. Walling ford: Gaussian Inc

    [25]

    段逸群, 刘玉柱, 李静, 张翔云, 秦朝朝, 布玛丽亚·阿布力米提 2018 原子与分子 35 719Google Scholar

    Duan Y Q, Liu Y Z, Li J, Zhang X Y, Qin C C, Abulimiti B 2018 J Atom Mol Phys 35 719Google Scholar

    [26]

    吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 64 153102Google Scholar

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Linghu R F 2015 Acta Phys. Sin 64 153102Google Scholar

    [27]

    徐光宪, 黎乐民, 王德民 2007 量子化学: 基本原理和从头计算法(中册)(北京: 科学出版社)第3页

    Xu G X, Li L M, Wang D M 2007 Quantum Chemistry: Basic Principle and ab Initio Calculation (Vol. 2) (Beijing: Science Press) P3 (in Chinese)

    [28]

    Grozema F C, Telesca R, Joukman H T 2001 Chem. Phys. 115 10014

    [29]

    Kjeellberg P, Zhi H, Tonu P J 2003 Phys. Chem. B 107 13737Google Scholar

    [30]

    朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子 2 169Google Scholar

    Zhu Z H, Fu Y. B, Gao T, Chen Y L, Chen X J 2003 J Atom Mol Phys 2 169Google Scholar

    [31]

    李祎, 张晓星, 肖淞, 黄立群, 唐焗, 邓载韬, 田双双 2018 中国电机工程学报 38 4298

    Li Y, Zhang X X, Xiao S, Huang L Q, Tang J, Deng Z T, Tian S S 2018 Chin. Soc. Elec. Eng 38 4298

    [32]

    黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚 2011 60 123101

    Huang D H, Wang P H, Cheng X H, Wan M J, Jiang G 2011 Acta Phys. Sin 60 123101

    [33]

    卢天, 陈飞武 2012 物理化学学报 28 1Google Scholar

    Lu T, Chen F W 2012 Acta Phys-Chim. Sin. 28 1Google Scholar

    [34]

    李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦 2014 63 076102

    Li X, Zhang L, Yang M S, Chu X X, Xu C, Chen L, Wang Y Y 2014 Acta Phys. Sin. 63 076102

    [35]

    Lu T, Chen F W 2012 J. Comput. Chem 33 580Google Scholar

    [36]

    段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英, 2019 68 144201Google Scholar

    Duan X K, Ren J J, Hao H, Zhang Q, Gong Q H, Gu Y 2019 Acta Phys. Sin. 68 144201Google Scholar

    [37]

    Lu T, Chen F W, 2013 J. Phys. Chem. A 117 3100Google Scholar

  • 图 1  C5F10O分子的基态结构

    Fig. 1.  Stable structure of C5F10O.

    图 2  不同电场强度下C5F10O分子的键长变化

    Fig. 2.  Bond length of C5F10O at different electric field.

    图 3  不同电场强度下C5F10O分子的键角变化

    Fig. 3.  Bond angle of C5F10O at different electric field.

    图 4  不同电场强度下C5F10O的NBO电荷布局数

    Fig. 4.  NBO charge of C5F10O at different electric field.

    图 5  不同电场强度下C5F10O的电子云

    Fig. 5.  Electron cloud of C5F10O at different electric field.

    图 6  能量随电场强度的变化 (a), (b), (c)分别是总能量、动能和势能随电场强度的变化

    Fig. 6.  Variation of energy of C5F10O at different electric field. Panels (a), (b), and (c) are changes of total energy, kinetic energy, and potential energy at different electric field.

    图 7  C5F10O的前线轨道图

    Fig. 7.  Molecular frontier orbital of C5F10O.

    图 8  不同电场强度下C5F10O的能隙变化

    Fig. 8.  Energy gap of C5F10O at different electric field

    图 9  不同电场强度下C5F10O的红外光谱

    Fig. 9.  Infrared spectrum of C5F10O at different electric field.

    图 10  C5F10O前8个单重激发态的电子跃迁图(等值面为0.02)

    Fig. 10.  Electron transition of first 8 single-excited states of C5F10O (value = 0.02).

    图 11  C5F10O第5个单重激发态的电子跃迁图(等值面为0.01)

    Fig. 11.  Electron transition of the 5 single-excited states of C5F10O (value = 0.01).

    表 1  C5F10O分子键长与文献值的对比

    Table 1.  The bond length of C5F10O compared with the reference

    ContrastR(4, 16)/nmR(5, 15)/nmR(3, 4)/nmR(3, 12)/nmR(4, 5)/nm
    Reference0.1170000.1306000.1540000.1328000.153900
    Theoretical calculation0.1190860.1329330.1558960.1354970.155892
    Relative error/%1.7830.17861.2312.0301.294
    下载: 导出CSV

    表 2  不同电场强度下C5F10O的前线轨道能级

    Table 2.  Frontier orbital energy levels of C5F10O at different electric field.

    F/a.u.EL/eVEH/eVEG/eV
    0.000–3.197–8.9685.771
    0.003–3.260–9.0215.760
    0.006–3.324–9.0735.748
    0.009–3.388–9.1235.735
    0.012–3.453–9.1725.719
    0.015–3.517–9.2195.702
    0.018–3.583–9.2655.683
    0.021–3.649–9.3105.661
    0.024–3.715–9.3535.638
    0.027–3.783–9.3955.612
    0.030–3.852–9.4355.582
    下载: 导出CSV

    表 3  C5F10O前8个单重激发态的激发特性

    Table 3.  Excitation characteristics of first 8 singlet-excited states of C5F10O.

    Excited StateDtEC/eVOrbital-Contribution (hole)Orbital-Contribution (electron)
    S(0) → S(1)0.267–0.7009.775374MO 64-95.39%MO 65-99.352%
    S(0) → S(2)1.7230.6486.741638MO 63-78.436%MO 65-98.828%
    S(0) → S(3)0.570–0.3558.394609MO 55-13.986% MO 57-44.649%, MO 65-99.139%
    S(0) → S(4)1.135–0.1396.968679MO 52-19.354% MO 55-17.810% MO 62-28.358%, MO 65-99.049%
    S(0) → S(5)1.144–0.3007.015306MO 64-86.457%MO 66-84.652%
    S(0) → S(6)1.8620.8796.505353MO 60-34.078% MO 61-55.521%MO 65-91.502%
    S(0) → S(7)1.6010.5666.600581MO 56-19.786% MO 58-16.594% MO 59-30.422%MO 65-96.849%
    S(0) → S(8)0.948–0.0796.641575MO 55-33.730% MO 57-21.883% MO 62-22.257%MO 65-99.078%
    下载: 导出CSV

    表 4  不同电场强度下C5F10O前8个单重激发态的激发能

    Table 4.  Excitation energy of first 8 singlet-excited states of C5F10O at different electric field.

    F/a.u.Eex/eV
    0.0000.0030.0060.0090.0120.0150.0180.0210.0240.0270.030
    n = 14.0414.0524.0634.0724.0784.0864.0914.0954.0974.0974.095
    n = 27.3247.2837.2407.1957.1487.0997.0486.9966.9406.8836.823
    n = 38.4278.4008.3688.3298.2838.2108.0897.9637.8337.7007.565
    n = 48.6918.6518.5608.4518.3368.2368.1688.0877.9807.8537.719
    n = 58.7158.6738.6188.5678.4998.3978.2778.1548.0417.9357.823
    n = 68.7768.7598.7878.6938.5888.5098.4448.3818.3078.2088.098
    n = 79.0198.9198.8118.8148.7708.6638.5538.4468.3518.2838.225
    n = 89.1599.0768.9838.8838.8268.7728.6828.5838.4818.3788.277
    下载: 导出CSV

    表 5  不同电场强度下C5F10O前8个单重激发态的波长

    Table 5.  Wavelength of first 8 singlet-excited states of C5F10O at different electric field.

    F/a.u.λ/nm
    0.0000.0030.0060.0090.0120.0150.0180.0210.0240.0270.030
    n = 1306.80305.93305.16304.48303.89303.41303.04302.78302.64302.63302.75
    n = 2169.28170.24171.25172.32173.45174.64175.90177.23178.64180.13181.71
    n = 3147.12147.60148.17148.85149.68151.01153.27155.71158.29161.02163.88
    n = 4142.65143.31144.84146.72148.73150.54151.79153.31155.36157.87160.62
    n = 5142.27142.96143.86144.72145.89147.65149.80152.05154.18156.26158.48
    n = 6141.28141.55141.10142.63144.37145.72146.83147.94149.25151.05153.10
    n = 7137.48139.02140.72140.66141.37143.12144.96146.80148.47149.69150.75
    n = 8135.37136.61138.03139.57140.47141.34142.80144.45146.19147.98149.79
    下载: 导出CSV

    表 6  不同电场强度下C5F10O前8个单重激发态的振子强度

    Table 6.  Oscillator strength of first 8 singlet-excited states of C5F10O at different electric field.

    F/a.u.f
    0.0000.0030.0060.0090.0120.0150.0180.0210.0240.0270.030
    n = 10.00020.00020.00020.00020.00020.00010.00010.00010.00010.00010.0001
    n = 20.00330.00320.00300.00290.00280.00260.00260.00250.00240.00240.0024
    n = 30.00150.00200.00250.00300.00350.00390.00440.00450.00450.00450.0044
    n = 40.00140.00120.00240.00350.00420.00480.00530.00550.00520.00520.0055
    n = 50.05910.00270.00390.00490.00730.00830.00800.00860.01020.01170.0131
    n = 60.01620.07380.06410.00660.00240.00050.00040.00040.00230.00470.0047
    n = 70.01800.01270.01480.05700.00980.01010.01070.01040.00780.00480.0054
    n = 80.00130.00080.00390.00940.02760.00780.01260.01700.02030.02280.0236
    下载: 导出CSV
    Baidu
  • [1]

    周安春, 高理迎, 冀肖彤, 张名 2018 电网技术 42 3429

    Zhou A C, Gao L Y, Ji X T, Z M 2018 Power Syst Technol 42 3429

    [2]

    Deng Y K, Xiao D M, Chen J 2013 High Voltage Eng 39 2288

    [3]

    Chen X, Yang P Y, Ge G W, Wu Q L, Xie W 2019 Plasma Sci. Technol 21 83

    [4]

    高克利, 颜湘莲, 王浩, 何洁, 李志兵 2018 高电压技术 44 3105

    Gao K L, Yan X L, Wang H, He J, Li B Z 2018 High Voltage Eng 44 3105

    [5]

    Christophorou L G, Olthoff J K 2000 J Phys Chem Ref Data 29 267Google Scholar

    [6]

    肖焓艳, 张晓星, 肖淞, 胡雄雄 2017 电工技术学报 32 20

    Xiao H Y, Zhang X X, Xiao S, Hu X X, 2017 Trans. China Electrotechn. Soc 32 20

    [7]

    张晓星, 田双双, 肖淞, 李祎 2018 电工技术学报 33 2883

    Zhang X X, Tian S S, Xiao S, Li W 2018 Trans. China Electrotechn. Soc 33 2883

    [8]

    肖登明 2016 高压技术 42 1035

    Xiao D M 2016 High Voltage Eng 42 1035

    [9]

    汤峤永, 姚素梅 2018 有机氟工业 4 37

    Tang Q Y, Yao S M 2018 Organo-Fluorine Industry 4 37

    [10]

    Hyrenbach M, Hintzen T, Müller P, John O 2015 23rd International Conference on Electricity Distribution Lyon, June 15−18, 1

    [11]

    Simka P, Ranjan N 2015 19 th International Symposium on High Voltage Engineering Pilsen Czech Republic, August 23-28

    [12]

    Guo Z, Li X W, Li B X, Fu M L, Zhuo R, Wang D B 2019 IEEE Trans. Dielectr. Electr. Insul 26 129Google Scholar

    [13]

    Wada J, Ueta G, Okabe S 2016 IEEE Trans. Dielectr. Electr. Insul 23 838Google Scholar

    [14]

    王小华, 傅熊雄, 韩国辉, 卢彦辉, 李旭旭, 高青青, 荣命哲 2017 高电压技术 43 715

    Wang X H, Fu X X, Han G H, Lu Y H, Li X X, Gao Q Q, Rong M Z 2017 High Voltage Eng 43 715

    [15]

    Märt A, Indrek J, Matti L, Peeter P, Jüri R 2018 J Phys D Appl Phys 51 135205Google Scholar

    [16]

    Stoller P C, Doiron C B, Tehlar D, Simka P, Ranjan N 2017 IEEE Trans. Dielectr. Electr. Insul 24 2712Google Scholar

    [17]

    李兴文, 邓云坤, 姜旭, 赵虎, 卓然, 王邸博, 傅明利 2017 高电压技术 43 708

    Li X W, Deng Y K, Jiang X, Zhao H, Zhuo R, Wang D B, Fu M L 2017 High Voltage Eng 43 708

    [18]

    邓云坤, 马仪, 王达达, 郭泽, 李兴文, 赵虎 2018 电器与能效管理技术 10 40

    Deng Y K, Ma Y, Wang D D, Guo Z, Li X W, Zhao H 2018 Electr. Ene Manag Technol 10 40

    [19]

    马仪, 邓云坤 2018 广东电力 31 44

    Ma Y, Deng Y K 2018 Guangdong Electr Power 31 44

    [20]

    Lei Z C, Zeng F P, Tang J, Wan Z F, Zhang M X, Dai L J 2019 IEEE Access 7 92724Google Scholar

    [21]

    Zhang Y, Zhang X X, Li Y, Li Y L, Chen Q, Zhang G Z, Xiao S, Tang J 2019 RSC Adv 9 18963Google Scholar

    [22]

    Fu Y W, Wang X H, Yang A J, Rong M Z 2019 AIP Adv 9 015318Google Scholar

    [23]

    李庆民, 黄旭炜, 刘涛, 闫江燕, 王兆东, 张颖, 鲁旭 2016 电工技术学报 31 1Google Scholar

    Li Q M, Huang X W, Liu T, Yan J Y, Wang Z D, Zhang Y, Lu X 2016 Trans. China Electrotechn. Soc 31 1Google Scholar

    [24]

    Frish M J, Trucks G W, Schlegal H B 2010 Gaussian 09, Revision B01. Walling ford: Gaussian Inc

    [25]

    段逸群, 刘玉柱, 李静, 张翔云, 秦朝朝, 布玛丽亚·阿布力米提 2018 原子与分子 35 719Google Scholar

    Duan Y Q, Liu Y Z, Li J, Zhang X Y, Qin C C, Abulimiti B 2018 J Atom Mol Phys 35 719Google Scholar

    [26]

    吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 64 153102Google Scholar

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Linghu R F 2015 Acta Phys. Sin 64 153102Google Scholar

    [27]

    徐光宪, 黎乐民, 王德民 2007 量子化学: 基本原理和从头计算法(中册)(北京: 科学出版社)第3页

    Xu G X, Li L M, Wang D M 2007 Quantum Chemistry: Basic Principle and ab Initio Calculation (Vol. 2) (Beijing: Science Press) P3 (in Chinese)

    [28]

    Grozema F C, Telesca R, Joukman H T 2001 Chem. Phys. 115 10014

    [29]

    Kjeellberg P, Zhi H, Tonu P J 2003 Phys. Chem. B 107 13737Google Scholar

    [30]

    朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子 2 169Google Scholar

    Zhu Z H, Fu Y. B, Gao T, Chen Y L, Chen X J 2003 J Atom Mol Phys 2 169Google Scholar

    [31]

    李祎, 张晓星, 肖淞, 黄立群, 唐焗, 邓载韬, 田双双 2018 中国电机工程学报 38 4298

    Li Y, Zhang X X, Xiao S, Huang L Q, Tang J, Deng Z T, Tian S S 2018 Chin. Soc. Elec. Eng 38 4298

    [32]

    黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚 2011 60 123101

    Huang D H, Wang P H, Cheng X H, Wan M J, Jiang G 2011 Acta Phys. Sin 60 123101

    [33]

    卢天, 陈飞武 2012 物理化学学报 28 1Google Scholar

    Lu T, Chen F W 2012 Acta Phys-Chim. Sin. 28 1Google Scholar

    [34]

    李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦 2014 63 076102

    Li X, Zhang L, Yang M S, Chu X X, Xu C, Chen L, Wang Y Y 2014 Acta Phys. Sin. 63 076102

    [35]

    Lu T, Chen F W 2012 J. Comput. Chem 33 580Google Scholar

    [36]

    段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英, 2019 68 144201Google Scholar

    Duan X K, Ren J J, Hao H, Zhang Q, Gong Q H, Gu Y 2019 Acta Phys. Sin. 68 144201Google Scholar

    [37]

    Lu T, Chen F W, 2013 J. Phys. Chem. A 117 3100Google Scholar

  • [1] 李世雄, 陈德良, 张正平, 隆正文, 秦水介. 环形C18在外电场下的基态性质和激发特性.  , 2020, 69(10): 103101. doi: 10.7498/aps.69.20200268
    [2] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性.  , 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [3] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究.  , 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [4] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性.  , 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [5] 李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介. ZnSe在外电场下的基态性质和激发特性研究.  , 2015, 64(4): 043101. doi: 10.7498/aps.64.043101
    [6] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性.  , 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [7] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [8] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究.  , 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [9] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究.  , 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [10] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性.  , 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [11] 徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳. 外电场作用下TiO光激发特性研究.  , 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [12] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究.  , 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [13] 杨剑, 王倪颖, 朱冬玖, 陈宣, 邓开明, 肖传云. MPb10(M=Ti,V,Cr,Cu,Pd)几何结构和磁性的密度泛函计算研究.  , 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [14] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究.  , 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [15] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究.  , 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [16] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究.  , 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [17] 盛 勇, 毛华平, 涂铭旌. TinMg (n=1—10)掺杂团簇的密度泛函研究.  , 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [18] 矫玉秋, 赵 昆, 卢贵武. H3PAuPh与(H3PAu)2(1,4-C6H4)2光谱性质的密度泛函研究.  , 2008, 57(3): 1592-1598. doi: 10.7498/aps.57.1592
    [19] 徐国亮, 肖小红, 耿振铎, 刘玉芳, 朱正和. 甲基乙烯基硅酮在外场作用下的光激发特性研究.  , 2007, 56(9): 5196-5201. doi: 10.7498/aps.56.5196
    [20] 徐国亮, 朱正和, 马美仲, 谢安东. 甲烷在外场作用下的光激发特性研究.  , 2005, 54(7): 3087-3093. doi: 10.7498/aps.54.3087
计量
  • 文章访问数:  9448
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-24
  • 修回日期:  2019-10-23
  • 上网日期:  2019-12-14
  • 刊出日期:  2020-01-05

/

返回文章
返回
Baidu
map