-
本文以6-311++g(d,p)为基组, 采用密度泛函理论的B3P86方法优化得到了ZnO分子的基态稳定构型, 并计算了不同外电场(-0.050.05a.u.)下ZnO基态分子的稳定电子结构, 研究外电场对ZnO基态分子键长、总能量、电荷分布、能级分布、能隙及红外光谱的影响. 结果表明: 外加电场的大小和方向对分子结构和电子特性均有明显影响. 随着正向外加电场的增加, ZnO基态分子的平衡键长先减小后增加, 而分子总能量、振动频率和红外光谱的强度均先增加后减小. 分子的最高占据轨道能量EH、最低未占据轨道能量EL和能隙Eg始终处于减小趋势, 因而占据轨道的电子更容易被激发至空轨道. 这一结果可为ZnO分子的电致发光机理研究提供一定的理论参考.Based on the equilibrium structure obtained, the ground states of ZnO molecule under external electric fields ranging from -0.05 to 0.05 a.u. were optimized using the density functional theory B3P86 at 6-311++g(d,p) level. Effects of electric fields on the bond length, total energy, charge distribution, energy levels, HOMO-LUMO gap and the infrared spectrum of the ground states of ZnO molecule have been investigated systematically. The results show that the molecular geometry and electronic properties were dependent on the magnitude and direction of the external electric field considerebly. With the increase of electric field along the molecular axis O-Zn, the equilibrium bond length first decreased and then increased, while the total energy, the harmonic frequency and infrared spectrum first increased and then decreased. But the HOMO, LUMO energy levels and the energy gap decreased monotonically, indicateing that the molecule could be excited easily by a specific electric field. We think that the present results are useful for better understanding the physical mechanism underlying the electroluminescence properties of ZnO molecule.
-
Keywords:
- zinc oxide /
- external electric field /
- optimized parameters /
- excitation
[1] Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B 33 223
[2] Ellert C, Corkum P B 1999 Phys. Rev. A 59 3170
[3] Ellert C, Stapelfeldt H, Constant E, Sakai H, Wright J, Rayner D M, Corkum P B 1998 Phil. Trans. R. Soc. Lond A 356 329
[4] Ledingham K W D, Singhal R P, Smith D J, McCanny T, Graham P, Kilic H S, Peng W X, Wang S L, Langley A J, Taday P F, Kosmidis C 1998 J. Phys. Chem. A 102 3002
[5] Walsh T D G, Strach L, Chin S L 1998 J. Phys. B 31 4853
[6] Xu G L, Liu Y F, Sun J F, Zhang X Z, Zhu Z H 2007 Acta Phys. Sin. 56 5704 (in Chinese) [徐国亮, 刘玉芳, 孙金锋, 张现周, 朱正和 2007 56 5704]
[7] Chen X J, Ma M Z, Luo S Z, Zhu Z H 2004 J. Atom. Mol. Phys. 21 19 (in Chinese) [陈晓军, 马美仲, 罗顺忠, 朱正和 2004 原子与分子 21 19]
[8] He J Y, Long Z W, Long C Y, Cai S H 2010 Acta Phys. Sin. 59 1651 (in Chinese) [何建勇, 隆正文, 龙超云, 蔡绍洪 2010 59 1651]
[9] Choopum S, Vispute R D, Noch W, Balsamo A, Sharma R P, Venkatesan T 1999 Appl. Phys. Lett. 75 3947
[10] Bär M, Reichardt J, Grimm A, Kötschau I, Lauermann I, Rahne K, Sokoll S, LuxSteiner M C, Fischer Ch H, Weinhardt L, Umbach E, Heske C, Jung C, Niesen T P, Visbeck S 2005 J. Appl. Phys. 98 053702
[11] Minami T 2008 Thin Solid Films 516 5822
[12] He H B, Fan Z X 1998 Acta Opt. Sin. 18 1676 (in Chinese) [贺洪波, 范正修 1998 光学学报 18 1676]
[13] Hong R J, Shao J D, He H B, Fan Z X 2005 Chin. Opt. Lett. 3 428
[14] Peng X P, Yang Y H, Song C A, Wang Y Y 2004 Acta Opt. Sin. 24 1459 (in Chinese) [朋兴平, 杨映虎, 宋长安, 王印月 2004 光学学报 24 1459]
[15] Tang B, Zhang Q, Luo Q, Liu Z H, Chen J Y 2012 Mater. Struct. 49 83 (in Chinese) [唐斌, 张强, 罗强, 刘忠华, 陈建勇 2012 材料与结构 49 83]
[16] Wang L, liu Y, Xu G T, Li X Y, Dong Q M, Huang J, Liang P 2012 Acta Phys. Sin. 61 063103 (in Chinese) [王乐, 刘阳, 徐国堂, 李晓艳, 董前民, 黄杰, 梁培 2012 61 063103]
[17] Gao X Q, Guo Z Y, Zhang Y F, Cao D X 2010 Chin. J. Lumin. 31 509 (in Chinese) [高小奇, 郭志友, 张宇飞, 曹东兴 2010 发光学报 31 509]
[18] Kim J H, Li X, Wang L S 2001 J. Phys. Chem. A 105 5709
[19] Wang Q Y, Xie A D, Zhu Z H 2006 J. At. Mol. Phys. 23 1065 (in Chinese) [王秋云, 谢安东, 朱正和 2006 原子与分子 23 1065]
[20] Frisch M J, Trucks G W, Schleqel H B 2003 Gaussian 03, Revision B03. (Pittsburgh PA: Gaussian Inc.)
[21] Jain A, Kumar V, Kawazoe Y 2006 Comp. Mater. Sci. 36 258
[22] Feng J K, Li J, Wang Z Z 1990 Int. J. Quantum. Chem. 37 599
-
[1] Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B 33 223
[2] Ellert C, Corkum P B 1999 Phys. Rev. A 59 3170
[3] Ellert C, Stapelfeldt H, Constant E, Sakai H, Wright J, Rayner D M, Corkum P B 1998 Phil. Trans. R. Soc. Lond A 356 329
[4] Ledingham K W D, Singhal R P, Smith D J, McCanny T, Graham P, Kilic H S, Peng W X, Wang S L, Langley A J, Taday P F, Kosmidis C 1998 J. Phys. Chem. A 102 3002
[5] Walsh T D G, Strach L, Chin S L 1998 J. Phys. B 31 4853
[6] Xu G L, Liu Y F, Sun J F, Zhang X Z, Zhu Z H 2007 Acta Phys. Sin. 56 5704 (in Chinese) [徐国亮, 刘玉芳, 孙金锋, 张现周, 朱正和 2007 56 5704]
[7] Chen X J, Ma M Z, Luo S Z, Zhu Z H 2004 J. Atom. Mol. Phys. 21 19 (in Chinese) [陈晓军, 马美仲, 罗顺忠, 朱正和 2004 原子与分子 21 19]
[8] He J Y, Long Z W, Long C Y, Cai S H 2010 Acta Phys. Sin. 59 1651 (in Chinese) [何建勇, 隆正文, 龙超云, 蔡绍洪 2010 59 1651]
[9] Choopum S, Vispute R D, Noch W, Balsamo A, Sharma R P, Venkatesan T 1999 Appl. Phys. Lett. 75 3947
[10] Bär M, Reichardt J, Grimm A, Kötschau I, Lauermann I, Rahne K, Sokoll S, LuxSteiner M C, Fischer Ch H, Weinhardt L, Umbach E, Heske C, Jung C, Niesen T P, Visbeck S 2005 J. Appl. Phys. 98 053702
[11] Minami T 2008 Thin Solid Films 516 5822
[12] He H B, Fan Z X 1998 Acta Opt. Sin. 18 1676 (in Chinese) [贺洪波, 范正修 1998 光学学报 18 1676]
[13] Hong R J, Shao J D, He H B, Fan Z X 2005 Chin. Opt. Lett. 3 428
[14] Peng X P, Yang Y H, Song C A, Wang Y Y 2004 Acta Opt. Sin. 24 1459 (in Chinese) [朋兴平, 杨映虎, 宋长安, 王印月 2004 光学学报 24 1459]
[15] Tang B, Zhang Q, Luo Q, Liu Z H, Chen J Y 2012 Mater. Struct. 49 83 (in Chinese) [唐斌, 张强, 罗强, 刘忠华, 陈建勇 2012 材料与结构 49 83]
[16] Wang L, liu Y, Xu G T, Li X Y, Dong Q M, Huang J, Liang P 2012 Acta Phys. Sin. 61 063103 (in Chinese) [王乐, 刘阳, 徐国堂, 李晓艳, 董前民, 黄杰, 梁培 2012 61 063103]
[17] Gao X Q, Guo Z Y, Zhang Y F, Cao D X 2010 Chin. J. Lumin. 31 509 (in Chinese) [高小奇, 郭志友, 张宇飞, 曹东兴 2010 发光学报 31 509]
[18] Kim J H, Li X, Wang L S 2001 J. Phys. Chem. A 105 5709
[19] Wang Q Y, Xie A D, Zhu Z H 2006 J. At. Mol. Phys. 23 1065 (in Chinese) [王秋云, 谢安东, 朱正和 2006 原子与分子 23 1065]
[20] Frisch M J, Trucks G W, Schleqel H B 2003 Gaussian 03, Revision B03. (Pittsburgh PA: Gaussian Inc.)
[21] Jain A, Kumar V, Kawazoe Y 2006 Comp. Mater. Sci. 36 258
[22] Feng J K, Li J, Wang Z Z 1990 Int. J. Quantum. Chem. 37 599
计量
- 文章访问数: 7875
- PDF下载量: 713
- 被引次数: 0