搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnSe在外电场下的基态性质和激发特性研究

李世雄 吴永刚 令狐荣锋 孙光宇 张正平 秦水介

引用本文:
Citation:

ZnSe在外电场下的基态性质和激发特性研究

李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介

Ground state properties and excitation properties of ZnSe under different external electric fields

Li Shi-Xiong, Wu Yong-Gang, Linghu Rong-Feng, Sun Guang-Yu, Zhang Zheng-Ping, Qin Shui-Jie
PDF
导出引用
  • 以LANL2DZ为基组, 采用Hartree-Fock(HF)方法研究了不同外电场(-0.025–0.040 a.u.)对ZnSe分子的基态几何结构、电荷分布、能量、电偶极矩、最高占据轨道(HOMO)能级、最低空轨道(LUMO)能级、能隙、红外光谱特性的影响; 继而采用含时的TD-HF方法研究了ZnSe分子在外电场下前9 个激发态的吸收谱、激发能、振子强度等激发特性. 研究结果表明: 当电场从-0.025 a.u.变化到0.04 a.u. 时, 键长先减小后增加; 分子偶极矩先由正减小到0, 然后又反向增加; 体系总能量一直减小; 谐振频率先增加后减小, 红外光谱强度先减小后又增加. ZnSe分子的LUMO能级一直增加, HOMO能级先增加后又减小, 变化趋势较小, 而能隙一直增大. 外电场对ZnSe分子的激发特性影响较大, 当电场从-0.025 a.u.变化到0.04 a.u.时, 激发能增加, 相应的激发波长减小; 对应的振子强度也受到很大影响, 原来振子强度最强的激发态变得很弱, 而原来振子强度很弱的激发态变得最强. 因此, 可以通过改变电场来控制ZnSe的激发特性.
    The Hartree-Fork (HF) method with LANL2DZ basis set is used to investigate the equilibrium structures, atomic charge distributions, the highest occupied molecular orbital (HOMO) energy levels, the lowest unoccupied molecular orbital (LUMO) energy levels, energy gaps, dipole moments, harmonic frequencies and infrared intensities of ZnSe under different external electric fields ranging from -0.025 to 0.040 a.u. The excitation energies, transition wavelengths and oscillator strengths under the same external electric fields are calculated by the time-dependent-HF method. The results show that the bond length and electric dipole moment are proved to be first decreasing, and then increasing with the variation of the external field; the total energy is found to decrease linearly with the variation of external field; but the HOMO energy and energy gap are proved to increase with the variation of external field. The harmonic frequency and LUMO energy are found to first increase, and then decrease, but the infrared intensities are proved to first decrease, and then increase. The external electric field has significant effect on the excitation properties of ZnSe molecule. The excited energies from ground state to the first nine excited states are found to increase, and the transition wavelengths are decreasing with the variation of the external field. Meanwhile, the strongest excited state becomes very weak, and the weak excited state becomes strongest by the external field. The excitation properties of ZnSe material can be changed with external electric field.
    • 基金项目: 国家自然科学基金(批准号: 11364007)和贵州省科学技术基金(批准号: 黔科合J字[2013]2241号)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11364007) and the Science and Technology Foundation of Guizhou Province, China (Grant No. QKHJ[2013]2241).
    [1]

    Alivisatos A P 1996 Science 271 933

    [2]

    Azpiroz J M, Ugalde J M, Infante I 2014 J. Chem. Theory Comput. 10 76

    [3]

    Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S 2005 Science 307 538

    [4]

    Zrazhevskiy P, Gao X H 2013 Nat. Commun. 4 1619

    [5]

    Medintz I L, Tetsuouyeda H, Goldman E R, Mattoussi H 2005 Nat. Mater. 4 435

    [6]

    Liu W H, Howarth M, Greytak A B, Zheng Y, Nocera D G, Ting A Y, Bawendi M G 2008 J. Am. Chem. Soc. 130 1274

    [7]

    Shao L J, Gao Y F, Yan F 2011 Sensors 11 11736

    [8]

    Deya S C, Nathb S S, Bhattacherjeea R 2012 Micro Nanosystems 4 227

    [9]

    Singh R, Bester G 2012 Phys. Rev. B 85 205405

    [10]

    Matxain J M, Mercero J M, Fowler J E, Ugalde J M 2001 Phys. Rev. A 64 053201

    [11]

    Nanavati S P, Sundararajan V, Mahamuni S, Kumar V, Ghaisas S V 2009 Phys. Rev. B 80 245417

    [12]

    Sanville E, Burnin A, BelBruno J J 2006 J. Phys. Chem. A 110 2378

    [13]

    Liu L, Wu Q S, Ding Y P, Liu H J 2005 Chin. Chem. Lett. 16 375

    [14]

    Hwang C S, Cho I H 2005 Bull. Korean Chem. Soc. 26 1776

    [15]

    Hu Z G, Tian Y T, Li X J 2013 Chin. Phys. Lett. 30 087801

    [16]

    Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101

    [17]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113101

    [18]

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 61 043104]

    [19]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 63 043101]

    [20]

    Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102 (in Chinese) [王藩侯, 黄多辉, 杨俊升 2013 62 073102]

    [21]

    Grozema F C, Telesca R, Joukman H T, Siebbeles L D A, Snijders J G 2001 J. Chem. Phys. 115 10014

    [22]

    Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. Atom Mol. Phys. 20 169 (in Chinese) [朱正和, 傅依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子 20 169]

    [23]

    Stevens W J, Krauss M, Basch H, Jasien P G 1992 Can. J. Chem. 70 612

    [24]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: Van Nostrand Reinhold Company) p682

    [25]

    Li J, Liu X Y, Zhu Z H, Sheng Y 2012 Chin. Phys. B 21 033101

  • [1]

    Alivisatos A P 1996 Science 271 933

    [2]

    Azpiroz J M, Ugalde J M, Infante I 2014 J. Chem. Theory Comput. 10 76

    [3]

    Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S 2005 Science 307 538

    [4]

    Zrazhevskiy P, Gao X H 2013 Nat. Commun. 4 1619

    [5]

    Medintz I L, Tetsuouyeda H, Goldman E R, Mattoussi H 2005 Nat. Mater. 4 435

    [6]

    Liu W H, Howarth M, Greytak A B, Zheng Y, Nocera D G, Ting A Y, Bawendi M G 2008 J. Am. Chem. Soc. 130 1274

    [7]

    Shao L J, Gao Y F, Yan F 2011 Sensors 11 11736

    [8]

    Deya S C, Nathb S S, Bhattacherjeea R 2012 Micro Nanosystems 4 227

    [9]

    Singh R, Bester G 2012 Phys. Rev. B 85 205405

    [10]

    Matxain J M, Mercero J M, Fowler J E, Ugalde J M 2001 Phys. Rev. A 64 053201

    [11]

    Nanavati S P, Sundararajan V, Mahamuni S, Kumar V, Ghaisas S V 2009 Phys. Rev. B 80 245417

    [12]

    Sanville E, Burnin A, BelBruno J J 2006 J. Phys. Chem. A 110 2378

    [13]

    Liu L, Wu Q S, Ding Y P, Liu H J 2005 Chin. Chem. Lett. 16 375

    [14]

    Hwang C S, Cho I H 2005 Bull. Korean Chem. Soc. 26 1776

    [15]

    Hu Z G, Tian Y T, Li X J 2013 Chin. Phys. Lett. 30 087801

    [16]

    Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101

    [17]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113101

    [18]

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 61 043104]

    [19]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 63 043101]

    [20]

    Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102 (in Chinese) [王藩侯, 黄多辉, 杨俊升 2013 62 073102]

    [21]

    Grozema F C, Telesca R, Joukman H T, Siebbeles L D A, Snijders J G 2001 J. Chem. Phys. 115 10014

    [22]

    Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. Atom Mol. Phys. 20 169 (in Chinese) [朱正和, 傅依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子 20 169]

    [23]

    Stevens W J, Krauss M, Basch H, Jasien P G 1992 Can. J. Chem. 70 612

    [24]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: Van Nostrand Reinhold Company) p682

    [25]

    Li J, Liu X Y, Zhu Z H, Sheng Y 2012 Chin. Phys. B 21 033101

  • [1] 李世雄, 陈德良, 张正平, 隆正文, 秦水介. 环形C18在外电场下的基态性质和激发特性.  , 2020, 69(10): 103101. doi: 10.7498/aps.69.20200268
    [2] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性.  , 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [3] 徐梅, 令狐荣锋, 支启军, 杨向东, 吴位巍. 自由基分子BeH外电场特性.  , 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [4] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性.  , 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [5] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究.  , 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [6] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性.  , 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [7] 王月, 张凤霞, 王春杰, 高春晓. 高压下ZnSe直流和交流电学性质的研究.  , 2014, 63(21): 216401. doi: 10.7498/aps.63.216401
    [8] 徐国亮, 张琳, 路战胜, 刘培, 刘玉芳. 特殊构型Si2N2分子团簇电致激发特性的密度泛函理论研究.  , 2014, 63(10): 103101. doi: 10.7498/aps.63.103101
    [9] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下二氧化锆的分子结构及其特性.  , 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [10] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究.  , 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [11] 黄多辉, 王藩侯, 万明杰, 蒋刚. 外场下SnS分子结构及其特性.  , 2013, 62(1): 013104. doi: 10.7498/aps.62.013104
    [12] 徐国亮, 袁伟, 耿振铎, 刘培, 张琳, 张现周, 刘玉芳. 外场作用下蒽分子的激发特性研究.  , 2013, 62(7): 073104. doi: 10.7498/aps.62.073104
    [13] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下2,2,5,5-四氯联苯的分子结构与电子光谱.  , 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [14] 王藩侯, 黄多辉, 杨俊升. SnSe分子外场下的基态性质和激发态性质.  , 2013, 62(7): 073102. doi: 10.7498/aps.62.073102
    [15] 徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳. SiN分子外电场情况下的发光特性.  , 2012, 61(4): 043104. doi: 10.7498/aps.61.043104
    [16] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究.  , 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [17] 徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳. 外电场作用下TiO光激发特性研究.  , 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [18] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算.  , 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [19] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性.  , 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [20] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究.  , 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
计量
  • 文章访问数:  6427
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-03
  • 修回日期:  2014-09-27
  • 刊出日期:  2015-02-05

/

返回文章
返回
Baidu
map