搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究

何昱辰 刘向军

引用本文:
Citation:

基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究

何昱辰, 刘向军

Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption

He Yu-Chen, Liu Xiang-Jun
PDF
导出引用
  • 分子动力学模拟是研究纳米流体的输运特性的重要手段, 但计算量庞大. 为研究能体现流动传热过程的大体系纳米流体的输运特性, 本文对基液采用连续介质假设, 将基液的势能拟合在纳米团簇的势能中, 大幅度减小了计算量, 使得大体系输运特性的模拟成为可能, 且模拟结果与多组实验结果吻合较好. 采用此方法模拟研究了速度梯度剪切对Cu-H2O纳米流体颗粒聚集过程和聚集特性的影响, 进而对Cu-H2O纳米流体在流动传热过程中的热导率和黏度进行了模拟计算, 定量揭示了宏观流动传热过程中不同的速度梯度、速度、平均温度和温度梯度对于Cu-H2O纳米流体热导率和黏度的影响.
    Nanofluid is a kind of new engineering medium which is created by dispersing small quantity of nano-sized particles in the base fluid. The dispersion of solid nanoparticles in conventional fluids changes their transport properties remarkably. Molecular dynamics simulation (MDS) is an important approach to study the transport properties of nanofluids. However, the computation amount is huge, and it is very difficult to use the normal MDS to capture the transient flow and heat processes in Cu-H2O nanofluids if the regions in the simulation reach 149.6443 nm3 or 299.2883 nm3, and the number of Cu nano-particles reaches 6-64. Further study by means of simulation on the effects on effective transport properties of nanofluids is also difficult. In this paper, the water-based fluid region of 149.6443 nm3 or 299.2883 nm3 is assumed as continuum phase because of the very low Knudsen number of fluid, and the effects of water on nano-particles are fitted into the Cu-Cu potential parameters. Using the proposed method, the computation amount is significantly reduced. The effective thermal conductivity and dynamic viscosity coefficient of Cu-H2O nanofluids under the stationary condition are simulated and the results are verified with existing experimental data. The motion and aggregation processes of nano-particles in the water-based fluids at different velocity shear rate are simulated. Effects of velocity shear rate, fluid velocity, temperature gradient, and average temperature on the effective thermal conductivity and the dynamic viscosity of Cu-H2O nanofluids in the processes of flow and heat transfer are studied. Three conclusions can be drawn from the obtained results. Firstly, the proposed method is feasible to capture the transient flow and heat processes in Cu-H2O nanofluids, and is also capable to further study the transport properties of Cu-H2O nanofluids. Secondly, the velocity shear rate acting on a nanofluid can effectively prevent the aggregating process of nano-particles, and therefore reduce the diameter of particle-aggregations. Finally, the velocity shear rate and the average temperature of Cu-H2O nanofluids have much more effects on the transport properties, while the fluid velocity and temperature gradient have less effects; the velocity shear rate increases the effective thermal conductivity of a nanofluid but decreases its dynamic viscosity. A rise of average temperature increases the effective thermal conductivity but decreases the dynamic viscosity.
      通信作者: 刘向军, liuxj@ustb.me.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: FRF-SD-12-007B)资助的课题.
      Corresponding author: Liu Xiang-Jun, liuxj@ustb.me.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-SD-12-007B).
    [1]

    Xuan Y M, Li Q 2010 Energy transfer theory and application of nanofluid. (Beijing: Science Press) pp1-10 (in Chinese) [宣益民, 李强 2010 纳米流体能量传递理论与应用(北京:科学出版社) 第110页]

    [2]

    Qi C, He G Y, Li Y M, He Y R 2015 Acta Phys. Sin. 64 024703(in Chinese) [齐聪, 何光艳, 李意民, 何玉荣 2015 64 024703]

    [3]

    Hatat T, Imtiaz M, Alsaedi A, Mansoor R 2014 Chin. Phys. B 23 054701

    [4]

    Li Y T, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401(in Chinese) [李屹同, 沈谅平, 王浩, 汪汉斌 2013 62 124401]

    [5]

    Ling Z Y, Sun D J, Zhang Z Q 2013 Journal of Functional Materials 1 92 (in Chinese) [凌智勇, 孙东健, 张忠强 2013 功能材料 1 92]

    [6]

    Lee J, Yoon Y J, Eaton J K 2014 International Journal of Precision Engineering and Manufacturing 15 703

    [7]

    Beydokhti A K, Namaghi H A, Heris S Z 2013 Numerical Heat Transfer, Part B: Fundamentals 64 480

    [8]

    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I 2014 Chin. Phys. B 23 048203

    [9]

    Xiao B Q, Yang Y, Xu X F 2014 Chin. Phys. B 23 026601

    [10]

    Ahmad A, Asghar S, Alsaedi A 2014 Chin. Phys. B 23 074401

    [11]

    Frenkel D, Smit B 1996 Understanding Molecular Simulation From Algorithms to Applications(Cornwall: Academic Press) pp51-69

    [12]

    Gianluca Puliti 2014 Ph. D. Dissertation(Indiana: University of Notre Dame)

    [13]

    Kumar P, Varanasi S R, Yashonath S 2013 J Phys. Chem. B 117 27

    [14]

    Chen X, Cao G X, Han A J 2008 Nano Letters 8 2988

    [15]

    Lin Y S, Hsiao P Y, Chieng C C 2011 Applied Physics Letters 98 153105

    [16]

    Cui W Z, Bai M L, Lv J Z, Li X J 2011 I ndustrial Engineering Chemistry Research 50 13568

    [17]

    He Y C, Liu X J 2014 Chinese Journal of Theoretical and Applied Mechanics 46 871 (in Chinese) [何昱辰, 刘向军 2014 力学学报 46 871]

    [18]

    Bhattacharya P, S. Saha K, Yadav A 2004 Journal of Applied physic 95 6492

    [19]

    Melle S, Calderon O G, Rubio M A 2002 J. Non-Newtonian Fluid Mech. 102 135

    [20]

    Klingenberg D J, Van S F, Zukoski C F 1989 J. Chem. Phys. 91 7888

    [21]

    Hansen J P, MeDonald I R 1986 Theory of Simple Liquids (New York: Academic Press) p238-302

    [22]

    Andry T, Jose A 1999 J. Chem. Phys. 18 8510

    [23]

    Sarkar S, Selvam R P 2007 Journal of Applied Physics 102 074302

    [24]

    Li Q 2003 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [李强 2003 博士学位论文 (南京: 南京理工大学, 2003)]

    [25]

    Li Q, Xuan Y M 2003 Journal of Chemical Industry and Engineering 54 42 (in Chinese) [李强, 宣益民 2003 化工学报 54 42]

    [26]

    Wang B X 2000 Heat Transfer science and Technology (Beijing: Higher Education Press) pp757-762

  • [1]

    Xuan Y M, Li Q 2010 Energy transfer theory and application of nanofluid. (Beijing: Science Press) pp1-10 (in Chinese) [宣益民, 李强 2010 纳米流体能量传递理论与应用(北京:科学出版社) 第110页]

    [2]

    Qi C, He G Y, Li Y M, He Y R 2015 Acta Phys. Sin. 64 024703(in Chinese) [齐聪, 何光艳, 李意民, 何玉荣 2015 64 024703]

    [3]

    Hatat T, Imtiaz M, Alsaedi A, Mansoor R 2014 Chin. Phys. B 23 054701

    [4]

    Li Y T, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401(in Chinese) [李屹同, 沈谅平, 王浩, 汪汉斌 2013 62 124401]

    [5]

    Ling Z Y, Sun D J, Zhang Z Q 2013 Journal of Functional Materials 1 92 (in Chinese) [凌智勇, 孙东健, 张忠强 2013 功能材料 1 92]

    [6]

    Lee J, Yoon Y J, Eaton J K 2014 International Journal of Precision Engineering and Manufacturing 15 703

    [7]

    Beydokhti A K, Namaghi H A, Heris S Z 2013 Numerical Heat Transfer, Part B: Fundamentals 64 480

    [8]

    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I 2014 Chin. Phys. B 23 048203

    [9]

    Xiao B Q, Yang Y, Xu X F 2014 Chin. Phys. B 23 026601

    [10]

    Ahmad A, Asghar S, Alsaedi A 2014 Chin. Phys. B 23 074401

    [11]

    Frenkel D, Smit B 1996 Understanding Molecular Simulation From Algorithms to Applications(Cornwall: Academic Press) pp51-69

    [12]

    Gianluca Puliti 2014 Ph. D. Dissertation(Indiana: University of Notre Dame)

    [13]

    Kumar P, Varanasi S R, Yashonath S 2013 J Phys. Chem. B 117 27

    [14]

    Chen X, Cao G X, Han A J 2008 Nano Letters 8 2988

    [15]

    Lin Y S, Hsiao P Y, Chieng C C 2011 Applied Physics Letters 98 153105

    [16]

    Cui W Z, Bai M L, Lv J Z, Li X J 2011 I ndustrial Engineering Chemistry Research 50 13568

    [17]

    He Y C, Liu X J 2014 Chinese Journal of Theoretical and Applied Mechanics 46 871 (in Chinese) [何昱辰, 刘向军 2014 力学学报 46 871]

    [18]

    Bhattacharya P, S. Saha K, Yadav A 2004 Journal of Applied physic 95 6492

    [19]

    Melle S, Calderon O G, Rubio M A 2002 J. Non-Newtonian Fluid Mech. 102 135

    [20]

    Klingenberg D J, Van S F, Zukoski C F 1989 J. Chem. Phys. 91 7888

    [21]

    Hansen J P, MeDonald I R 1986 Theory of Simple Liquids (New York: Academic Press) p238-302

    [22]

    Andry T, Jose A 1999 J. Chem. Phys. 18 8510

    [23]

    Sarkar S, Selvam R P 2007 Journal of Applied Physics 102 074302

    [24]

    Li Q 2003 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [李强 2003 博士学位论文 (南京: 南京理工大学, 2003)]

    [25]

    Li Q, Xuan Y M 2003 Journal of Chemical Industry and Engineering 54 42 (in Chinese) [李强, 宣益民 2003 化工学报 54 42]

    [26]

    Wang B X 2000 Heat Transfer science and Technology (Beijing: Higher Education Press) pp757-762

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究.  , 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟研究.  , 2024, 73(23): 1-13. doi: 10.7498/aps.73.20241332
    [3] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟.  , 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [4] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟.  , 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [5] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响.  , 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [6] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响.  , 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [7] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究.  , 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [8] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流.  , 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [9] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究.  , 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [10] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟.  , 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [11] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟.  , 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [12] 徐炳振. 复杂自适应系统动力学演化及其相变的一般理论.  , 2008, 57(4): 1991-1997. doi: 10.7498/aps.57.1991
    [13] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [14] 胡海龙, 张 琨, 王振兴, 孔 涛, 胡 颖, 王晓平. 硫醇自组装分子膜末端基团对其电荷输运特性的影响.  , 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [15] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟.  , 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [16] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究.  , 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [17] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究.  , 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [18] 陈 钦, 李统藏, 石勤伟, 王晓平. 开口悬挂端对单壁碳纳米管电子输运特性的影响.  , 2005, 54(8): 3962-3966. doi: 10.7498/aps.54.3962
    [19] 王 刚, 端木云, 崔一平, 张 宇, 刘 宓. 聚集效应对银纳米粒子的二阶非线性光学特性的影响研究.  , 2005, 54(1): 144-148. doi: 10.7498/aps.54.144
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性.  , 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  5597
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-29
  • 修回日期:  2015-05-20
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map