搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维锗醚在钠离子电池方面的理论研究

陈思钰 叶小娟 刘春生

引用本文:
Citation:

二维锗醚在钠离子电池方面的理论研究

陈思钰, 叶小娟, 刘春生

Theoretical research of two-dimensional germanether in sodium-ion battery

Chen Si-Yu, Ye Xiao-Juan, Liu Chun-Sheng
PDF
HTML
导出引用
  • 因为钠在地球中的储备更加充足, 而且生产成本也更低廉, 因此钠离子电池也成了继锂离子电池以后, 研究中最热门的储能系统. 然而, 缺少合适的阳极材料是钠离子电池商业化的主要瓶颈. 本文基于密度泛函理论, 通过第一性原理计算对锗醚作为钠离子电池阳极材料的电化学性能进行了充分研究. 计算结果表明钠离子能够均匀稳定地吸附在锗醚两侧, 吸附能达到了–1.32 eV. 即使在较低的钠吸附浓度下, 吸附之后的锗醚也呈现出金属性, 这表明锗醚的电子导电性良好. 钠在锗醚单层结构上有两条可能的扩散路径, 分别沿着之字形和扶手椅方向, 计算表明沿之字形方向的扩散势垒更低, 为0.73 eV. 同时锗醚具有合适的开路电压(1.12 V), 理论容量为167.1 mAh·g–1, 体积变化率仅为10.8%, 以上结果表明单层锗醚具有作为钠离子电池阳极材料的潜力.
    Because sodium is more abundant in earth’s reserves and the lower cost to produce, sodium-ion batteries (SIBs) have become the most popular energy storage system in research after lithium-ion batteries. However, the the lack of suitable anode materials is a major bottleneck for the commercialization of SIBs. Owing to their large specific surface area and high electron mobility, two-dimensional (2D) materials are considered as the promising anode materials. Some 2D materials have already demonstrated remarkable properties, such as 2D BP (1974 mAh·g–1) and BC7 (870.25 mAh·g–1). However, most of the predicted 2D materials are difficult to satisfy the various requirements for high-performance battery materials. Therefore, it is still necessary to find a new 2D material with excellent properties as electrode material. Recently, Ye et al. [Ye X J, Lan Z S, Liu C S 2021 J. Phys. condens. Mat. 33 315301] predicted a potential 2D material named germanether. The germanether exhibits high electron mobility, which is higher than that of phosphine and MoS2, indicating its great potential applications in Nano Electronics. Therefore, by first-principles calculations based on density functional theory (DFT), the electrochemical properties of germanether as an anode material for SIBs are fully investigated. The computation results reveal that Na atoms can be adsorbed on germanether without clustering, and the adsorbed energy of Na-ion on the germanether is –1.32 eV. Then the charge redistribution of the whole system is also investigated through Mulliken charge population. In the adsorption process, Na atom transfers 0.71e to germanether. Even at low intercalated Na concentration, the Na adsorbed germanether system demonstrates metallic characteristics, showing good electronic conductivity. Two possible diffusion paths of material are calculated: one is along the armchair direction and the other is along the zigzag direction. The diffusion barrier along the zigzag direction is 0.73 eV for the most likely diffusion path, which is slightly higher than the diffusion barrier of MoS2, but still lower than many electrode materials used today. Meanwhile, germanether has a suitable specific energy capacity (167.1 mAh·g–1) and open circuit voltage (1.12 V). The volume change rate is only 10.8 %, which is lower than that of phosphorene and graphite. Based on the above results, germanether can serve as a potential anode material for SIBs.
      通信作者: 叶小娟, yexj@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61974068)资助的课题.
      Corresponding author: Ye Xiao-Juan, yexj@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61974068).
    [1]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [2]

    Panwar N L, Kaushik S C, Kothari S 2011 Renewable Sustainable Energy Rev. 15 1513Google Scholar

    [3]

    Kong L, Li C, Jiang J, Pecht M 2018 Energies 11 2191Google Scholar

    [4]

    Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y 2018 Adv. Energy Mater. 8 1702869Google Scholar

    [5]

    Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L 2016 Acc. Chem. Res. 49 231Google Scholar

    [6]

    Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S 2018 Chem. Rec. 18 459Google Scholar

    [7]

    Chayambuka K, Mulder G, Danilov D L, Notten P H 2020 Adv. Energy Mater. 10 2001310Google Scholar

    [8]

    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [9]

    Zhang X, Hou L, Ciesielski A, Samorì P 2016 Adv. Energy Mater. 6 1600671Google Scholar

    [10]

    Luo B, Liu G, Wang L 2016 Nanoscale 8 6904Google Scholar

    [11]

    Li Y, Guo S 2019 Nano Today 28 100774Google Scholar

    [12]

    Ling C, Mizuno F 2014 Phys. Chem. Chem. Phys. 16 10419Google Scholar

    [13]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 13921Google Scholar

    [14]

    Meng Q, Ma J, Zhang Y, Li Z, Hu A, Kai J J, Fan J 2018 J. Mater. Chem. A 6 13652Google Scholar

    [15]

    Mortazavi M, Wang C, Deng J, Shenoy V B, Medhekar N V 2014 J. Power Sources 268 279Google Scholar

    [16]

    Belasfar K, El Kenz A, Benyoussef A 2021 Mater. Chem. Phys. 257 123751Google Scholar

    [17]

    Sun W C, Wang S S, Dong S 2021 J. Mater. Sci. 56 13763Google Scholar

    [18]

    Zhang J, Zhang Y F, Li Y, Ren Y R, Huang S, Lin W, Chen W K 2021 Phys. Chem. Chem. Phys. 23 5143Google Scholar

    [19]

    Ye X J, Lan Z S, Liu C S 2021 J. Phys. Condens. Matter 33 315301Google Scholar

    [20]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [21]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [22]

    Ye X J, Zhu G L, Meng L, Guo Y D, Liu C S 2021 Phys. Chem. Chem. Phys. 23 12371Google Scholar

    [23]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Cryst. Mater. 220 567Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [26]

    Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J 2003 Comput. Mater. Sci. 28 250Google Scholar

    [27]

    Chan K T, Neaton J B, Cohen M L 2008 Phys. Rev. B 77 235430Google Scholar

    [28]

    Sannyal A, Zhang Z, Gao X, Jang J 2018 Comput. Mater. Sci. 154 204Google Scholar

    [29]

    Ling C, Mizuno F 2013 Chem. Mater. 25 3062Google Scholar

    [30]

    Rajput K, Kumar V, Thomas S, Zaeem M A, Roy D R 2021 2D Mater. 8 035015Google Scholar

    [31]

    Chodvadiya D, Jha U, Śpiewak P, Kurzydłowski K J, Jha P K 2022 Appl. Surf. Sci. 593 153424Google Scholar

    [32]

    Ye X J, Xu J, Guo Y D, Liu C S 2021 Phys. Chem. Chem. Phys. 23 4386Google Scholar

    [33]

    Wang Y, Li Y 2020 J. Mater. Chem. A 8 4274Google Scholar

    [34]

    Majid A, Hussain K, Ud-Din Khan S, Ud-Din Khan S 2020 New J. Chem. 44 8910Google Scholar

    [35]

    Ling F, Liu X, Li L, Zhou X, Tang X, Li Y, Jing C, Wang Y, Xiang G, Jiang S 2022 Appl. Surf. Sci. 573 151550Google Scholar

    [36]

    Khossossi N, Banerjee A, Essaoudi I, Ainane A, Jena P, Ahuja R 2021 J. Power Sources 485 229318Google Scholar

    [37]

    Yadav N, Chakraborty B, Dhilip Kumar T J 2020 J. Phys. Chem. C 124 11293Google Scholar

    [38]

    Zhang X, Yu Z, Wang S S, Guan S, Yang H Y, Yao Y, Yang S 2016 J. Mater. Chem. A 4 15224Google Scholar

    [39]

    Wu Y, Wang S, Xie Y, Ye X, Sun S 2022 Appl. Surf. Sci. 574 151296Google Scholar

    [40]

    Deng X, Chen X, Huang Y, Xiao B, Du H 2019 J. Phys. Chem. C 123 4721Google Scholar

    [41]

    Jiang H R, Shyy W, Liu M, Wei L, Wu M C, Zhao T S 2017 J. Mater. Chem. A 5 672Google Scholar

    [42]

    Khossossi N, Banerjee A, Benhouria Y, Essaoudi I, Ainane A, Ahuja R 2019 Phys. Chem. Chem. Phys. 21 18328Google Scholar

    [43]

    Putungan D B, Lin S H, Kuo J L 2016 ACS Appl. Mater. Interfaces 8 18754Google Scholar

    [44]

    Yu D, Pang Q, Gao Y, Wei Y, Wang C, Chen G, Du F 2018 Energy Stor. Mater. 11 1Google Scholar

    [45]

    Sun Q, Dai Y, Ma Y, Jing T, Wei W, Huang B 2016 J. Phys. Chem. Lett. 7 937Google Scholar

    [46]

    Shukla V, Jena N K, Naqvi S R, Luo W, Ahuja R 2019 Nano Energy 58 877Google Scholar

    [47]

    Liu J, Zhang C, Xu L, Ju S 2018 RSC Adv. 8 17773Google Scholar

    [48]

    Dua H, Deb J, Paul D, Sarkar U 2021 ACS Appl. Nano Mater. 4 4912Google Scholar

    [49]

    Bhatt M D, O'Dwyer C 2015 Phys. Chem. Chem. Phys. 17 4799Google Scholar

    [50]

    Yang Z, Choi D, Kerisit S, Rosso K M, Wang D, Zhang J, Graff G, Liu J 2009 J. Power Sources 192 588Google Scholar

    [51]

    Yu T, Zhao Z, Liu L, Zhang S, Xu H, Yang G 2018 J. Am. Chem. Soc. 140 5962Google Scholar

    [52]

    Alptekin H, Au H, Jensen A C S, Olsson E, Goktas M, Headen T F, Adelhelm P, Cai Q, Drew A J, Titirici M M 2020 ACS Appl. Energy Mater. 3 9918Google Scholar

    [53]

    Zhang W J 2011 J. Power Sources 196 13Google Scholar

    [54]

    Khan M H, Moradi M, Dakhchoune M, Rezaei M, Huang S, Zhao J, Agrawal K V 2019 Carbon 153 458Google Scholar

    [55]

    Wang B, König M, Bromley C J, Yoon B, Treanor M J, Garrido Torres J A, Caffio M, Grillo F, Früchtl H, Richardson N V, Esch F, Heiz U, Landman U, Schaub R 2017 J. Phys. Chem. C 121 9413Google Scholar

    [56]

    Kang B, Kim Y, Cho J H, Lee C 2017 2 D Mater. 4 025014Google Scholar

    [57]

    Zhan L, Wan W, Zhu Z, Shih T M, Cai W 2017 J. Phys. Conf. Ser. 864 012037Google Scholar

    [58]

    Zhao B, Shen D, Zhang Z, Lu P, Hossain M, Li J, Li B, Duan X 2021 Adv. Funct. Mater. 31 2105132Google Scholar

  • 图 1  (a) 钠原子在锗醚结构上可能吸附的6个点位俯视图; (b) 吸附钠原子后锗醚的电荷差分密度图; (c) 原始锗醚的PDOS图; (d) 吸附钠原子之后锗醚的PDOS图

    Fig. 1.  (a) Top view of six possible adsorption sites of Na on the germanether; (b) the charge density difference of Na-adsorbed germanether; (c) the PDOS of pristine germanether; (d) the PDOS of Na-adsorbed germanether.

    图 2  (a) 钠在锗醚上的扩散路径俯视图; (b) 对应的钠在锗醚上的扩散势垒

    Fig. 2.  (a) Top view of the diffusion paths of a Na atom on the germanether surface; (b) the energy profiles of the corresponding Na diffusion pathways.

    图 3  (a) Na0.5Ge2O的俯视和侧视图; (b) NaGe2O的俯视和侧视图; (c) 钠-锗醚体系的平均吸附能; (d) 钠-锗醚体系的开路电压

    Fig. 3.  Top and side views of: (a) Na0.5Ge2O; (b) NaGe2O; (c) the average adsorption energy of NaxGe2O; (d) the Open circuit voltage of NaxGe2O.

    图 4  Na0.056Ge2O的能带图

    Fig. 4.  Band structure of the Na0.056Ge2O.

    图 5  (a)—(c) GeH3-O-GeH3分子在银(100)表面上三种不同的吸附位置; (d)—(f) GeH3-O-GeH3分子脱氢的初态、过渡态、末态的结构俯视图和侧视图; (h)—(j) 脱氢后的GeH3-O-GeH2扩散的初始状态、过渡状态以及最终状态的结构俯视图和侧视图; (g) GeH3-O-GeH3分子脱氢与(k)脱氢的GeH3-O-GeH2分子扩散的能量分布

    Fig. 5.  (a)–(c) Three different adsorption sites for digermyl ether adsorption on Ag (100). Optimized structures (top and side views) of the initial state (IS), transition state (TS), and final state (FS) during (d)–(f) dehydrogenation and (h)–(j) diffusion processes. Energy profiles of the (g) dehydrogenation and (k) diffusion processes.

    表 1  部分二维钠离子电池阳极材料的吸附能和扩散势垒(为了方便比较, 吸附能均取绝对值)

    Table 1.  Adsorption energies and diffusion barriers of some 2D Anode Materials for SIBs (For the convenience of comparison, the adsorption energies are taken as absolute values.)

    材料类型|吸附能|/eV扩散势垒/eV参考文献
    锗醚1.320.73本文
    Ca2C2.840.06[30]
    h-AlC2.100.41[31]
    Metallic BP23.840.03[32]
    Si3C0.720.34[33]
    2H-SiC0.813.3[34]
    CuTe1.040.31—0.72[35]
    g-GeC1.260.06[36]
    SiC71.640.8[37]
    MoN21.640.56[38]
    TiOF1.4710.14[39]
    GeP31.5280.27[40]
    下载: 导出CSV
    Baidu
  • [1]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [2]

    Panwar N L, Kaushik S C, Kothari S 2011 Renewable Sustainable Energy Rev. 15 1513Google Scholar

    [3]

    Kong L, Li C, Jiang J, Pecht M 2018 Energies 11 2191Google Scholar

    [4]

    Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y 2018 Adv. Energy Mater. 8 1702869Google Scholar

    [5]

    Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L 2016 Acc. Chem. Res. 49 231Google Scholar

    [6]

    Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S 2018 Chem. Rec. 18 459Google Scholar

    [7]

    Chayambuka K, Mulder G, Danilov D L, Notten P H 2020 Adv. Energy Mater. 10 2001310Google Scholar

    [8]

    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [9]

    Zhang X, Hou L, Ciesielski A, Samorì P 2016 Adv. Energy Mater. 6 1600671Google Scholar

    [10]

    Luo B, Liu G, Wang L 2016 Nanoscale 8 6904Google Scholar

    [11]

    Li Y, Guo S 2019 Nano Today 28 100774Google Scholar

    [12]

    Ling C, Mizuno F 2014 Phys. Chem. Chem. Phys. 16 10419Google Scholar

    [13]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 13921Google Scholar

    [14]

    Meng Q, Ma J, Zhang Y, Li Z, Hu A, Kai J J, Fan J 2018 J. Mater. Chem. A 6 13652Google Scholar

    [15]

    Mortazavi M, Wang C, Deng J, Shenoy V B, Medhekar N V 2014 J. Power Sources 268 279Google Scholar

    [16]

    Belasfar K, El Kenz A, Benyoussef A 2021 Mater. Chem. Phys. 257 123751Google Scholar

    [17]

    Sun W C, Wang S S, Dong S 2021 J. Mater. Sci. 56 13763Google Scholar

    [18]

    Zhang J, Zhang Y F, Li Y, Ren Y R, Huang S, Lin W, Chen W K 2021 Phys. Chem. Chem. Phys. 23 5143Google Scholar

    [19]

    Ye X J, Lan Z S, Liu C S 2021 J. Phys. Condens. Matter 33 315301Google Scholar

    [20]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [21]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [22]

    Ye X J, Zhu G L, Meng L, Guo Y D, Liu C S 2021 Phys. Chem. Chem. Phys. 23 12371Google Scholar

    [23]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Cryst. Mater. 220 567Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [26]

    Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J 2003 Comput. Mater. Sci. 28 250Google Scholar

    [27]

    Chan K T, Neaton J B, Cohen M L 2008 Phys. Rev. B 77 235430Google Scholar

    [28]

    Sannyal A, Zhang Z, Gao X, Jang J 2018 Comput. Mater. Sci. 154 204Google Scholar

    [29]

    Ling C, Mizuno F 2013 Chem. Mater. 25 3062Google Scholar

    [30]

    Rajput K, Kumar V, Thomas S, Zaeem M A, Roy D R 2021 2D Mater. 8 035015Google Scholar

    [31]

    Chodvadiya D, Jha U, Śpiewak P, Kurzydłowski K J, Jha P K 2022 Appl. Surf. Sci. 593 153424Google Scholar

    [32]

    Ye X J, Xu J, Guo Y D, Liu C S 2021 Phys. Chem. Chem. Phys. 23 4386Google Scholar

    [33]

    Wang Y, Li Y 2020 J. Mater. Chem. A 8 4274Google Scholar

    [34]

    Majid A, Hussain K, Ud-Din Khan S, Ud-Din Khan S 2020 New J. Chem. 44 8910Google Scholar

    [35]

    Ling F, Liu X, Li L, Zhou X, Tang X, Li Y, Jing C, Wang Y, Xiang G, Jiang S 2022 Appl. Surf. Sci. 573 151550Google Scholar

    [36]

    Khossossi N, Banerjee A, Essaoudi I, Ainane A, Jena P, Ahuja R 2021 J. Power Sources 485 229318Google Scholar

    [37]

    Yadav N, Chakraborty B, Dhilip Kumar T J 2020 J. Phys. Chem. C 124 11293Google Scholar

    [38]

    Zhang X, Yu Z, Wang S S, Guan S, Yang H Y, Yao Y, Yang S 2016 J. Mater. Chem. A 4 15224Google Scholar

    [39]

    Wu Y, Wang S, Xie Y, Ye X, Sun S 2022 Appl. Surf. Sci. 574 151296Google Scholar

    [40]

    Deng X, Chen X, Huang Y, Xiao B, Du H 2019 J. Phys. Chem. C 123 4721Google Scholar

    [41]

    Jiang H R, Shyy W, Liu M, Wei L, Wu M C, Zhao T S 2017 J. Mater. Chem. A 5 672Google Scholar

    [42]

    Khossossi N, Banerjee A, Benhouria Y, Essaoudi I, Ainane A, Ahuja R 2019 Phys. Chem. Chem. Phys. 21 18328Google Scholar

    [43]

    Putungan D B, Lin S H, Kuo J L 2016 ACS Appl. Mater. Interfaces 8 18754Google Scholar

    [44]

    Yu D, Pang Q, Gao Y, Wei Y, Wang C, Chen G, Du F 2018 Energy Stor. Mater. 11 1Google Scholar

    [45]

    Sun Q, Dai Y, Ma Y, Jing T, Wei W, Huang B 2016 J. Phys. Chem. Lett. 7 937Google Scholar

    [46]

    Shukla V, Jena N K, Naqvi S R, Luo W, Ahuja R 2019 Nano Energy 58 877Google Scholar

    [47]

    Liu J, Zhang C, Xu L, Ju S 2018 RSC Adv. 8 17773Google Scholar

    [48]

    Dua H, Deb J, Paul D, Sarkar U 2021 ACS Appl. Nano Mater. 4 4912Google Scholar

    [49]

    Bhatt M D, O'Dwyer C 2015 Phys. Chem. Chem. Phys. 17 4799Google Scholar

    [50]

    Yang Z, Choi D, Kerisit S, Rosso K M, Wang D, Zhang J, Graff G, Liu J 2009 J. Power Sources 192 588Google Scholar

    [51]

    Yu T, Zhao Z, Liu L, Zhang S, Xu H, Yang G 2018 J. Am. Chem. Soc. 140 5962Google Scholar

    [52]

    Alptekin H, Au H, Jensen A C S, Olsson E, Goktas M, Headen T F, Adelhelm P, Cai Q, Drew A J, Titirici M M 2020 ACS Appl. Energy Mater. 3 9918Google Scholar

    [53]

    Zhang W J 2011 J. Power Sources 196 13Google Scholar

    [54]

    Khan M H, Moradi M, Dakhchoune M, Rezaei M, Huang S, Zhao J, Agrawal K V 2019 Carbon 153 458Google Scholar

    [55]

    Wang B, König M, Bromley C J, Yoon B, Treanor M J, Garrido Torres J A, Caffio M, Grillo F, Früchtl H, Richardson N V, Esch F, Heiz U, Landman U, Schaub R 2017 J. Phys. Chem. C 121 9413Google Scholar

    [56]

    Kang B, Kim Y, Cho J H, Lee C 2017 2 D Mater. 4 025014Google Scholar

    [57]

    Zhan L, Wan W, Zhu Z, Shih T M, Cai W 2017 J. Phys. Conf. Ser. 864 012037Google Scholar

    [58]

    Zhao B, Shen D, Zhang Z, Lu P, Hossain M, Li J, Li B, Duan X 2021 Adv. Funct. Mater. 31 2105132Google Scholar

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 张磊, 陈起航, 曹硕, 钱萍. 基于第一性原理计算单层IrSCl和IrSI的载流子迁移率.  , 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [3] 李欣悦, 高国翔, 高强, 刘春生, 叶小娟. 二维BeB2作为镁离子电池阳极材料的理论研究.  , 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [4] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算.  , 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [5] 许伟良, 党荣彬, 杨佯, 郭秋卜, 丁飞翔, 韩帅, 唐小涵, 刘渊, 左战春, 王晓琦, 杨瑞, 金旭, 容晓晖, 洪捐, 许宁, 胡勇胜. Mg掺杂提升钠离子电池正极材料高电压循环性能.  , 2023, 72(5): 058802. doi: 10.7498/aps.72.20222098
    [6] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究.  , 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [7] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性.  , 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [8] 丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜. 钠离子层状氧化物材料相变及其对性能的影响.  , 2022, 71(10): 108801. doi: 10.7498/aps.71.20220291
    [9] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究.  , 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [10] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算.  , 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [11] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [12] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究.  , 2021, (): . doi: 10.7498/aps.70.20211516
    [13] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究.  , 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [14] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究.  , 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [15] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [16] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [17] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [18] 陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 室温钠离子电池材料及器件研究进展.  , 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [19] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算.  , 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  4376
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-06-20
  • 上网日期:  2022-11-04
  • 刊出日期:  2022-11-20

/

返回文章
返回
Baidu
map