Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of standing wave effect on uniformity of potential distribution between electrodes in large-area capacitively coupled discharges

ZHANG Yifan JIA Wenzhu TIAN Gangyu QU Qingyuan WANG Dengzhi CAO Xinmin ZHOU Jian SONG Yuanhong

Citation:

Influence of standing wave effect on uniformity of potential distribution between electrodes in large-area capacitively coupled discharges

ZHANG Yifan, JIA Wenzhu, TIAN Gangyu, QU Qingyuan, WANG Dengzhi, CAO Xinmin, ZHOU Jian, SONG Yuanhong
cstr: 32037.14.aps.74.20250279
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Large-area capacitively coupled discharges are widely used in plasma enhanced chemical vapor deposition (PECVD) processes for solar cell and display manufacturing. With the increase of the chamber size and driving frequency for improving production efficiency, the non-uniformity of deposited film induced by standing wave effects becomes more serious, which deserves more attention and in-depth research. Based on a fluid model coupled with a transmission line model, the potential amplitude distribution on the powered 2 m2 electrode and the plasma characteristics in a capacitive plasma sustained in a silane/hydrogen discharge driven at 27.12 MHz are investigated. This work identifies three key control parameters: pressure, silane content, and input power, with particular emphasis on radial wave attenuation caused by electron-neutral elastic collisions. The simulation results are validated by industrial experimental results, confirming the relationship between the distributions of potential amplitude on the powered electrode and the film thickness.Two different mechanisms emerge from the analysis. Under the conditions of low silane content and high power, the surface wave radial attenuation is not significant and the surface wave wavelength variations dominate the potential amplitude distribution on the powered electrode. Conversely, in the case of high silane content and low power, significant radial attenuation of the surface wave leads to the noticeable weakening of the standing wave effect due to higher electron-neutral collision frequency. Neglecting the radial attenuation of the surface wave will result in significant deviations in the potential amplitude distribution on the powered electrode as shown in the following figure.Strategies such as adjusting power input positions or using multiple power input are studied to improve uniformity, but the improvements are still limited. Although it requires strict parameter control and machining precision, the shaped electrode demonstrates remarkable uniformity improvement of the potential distribution. In the future work, it is necessary to further analyze the influence of the standing wave effects on the radial distributions of electron, ions, and neutral radicals under complex conditions, such as different chamber structures, gas flows, and temperature distributions, as well as the influence on the quality of deposited films. This will enable a more comprehensive and accurate study of standing wave effects, providing support and guidance for solving real industrial problems.
      Corresponding author: SONG Yuanhong, songyh@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12020101005, 12475202).
    [1]

    Yu C, Gao K, Peng C W, He C R, Wang S B, Shi W, Allen V, Zhang J T, Wang D Z, Tian G Y, Zhang Y F, Jia W Z, Song Y H, Hu Y Z, Colwell J, Xing C F, Ma Q, Wu H T, Guo L Y, Dong G Q, Jiang H, Wu H H, Wang X Y, Xu D C, Li K, Peng J, Liu W Z, Chen D, Lennon A, Cao X M, De Wolf S, Zhou J, Yang X B, Zhang X H 2023 Nat. Energy 8 1375Google Scholar

    [2]

    Crose M, Kwon J S I, Tran A, Christofides P D 2017 Renewable Energy 100 129Google Scholar

    [3]

    Crose M, Sang Il Kwon J, Nayhouse M, Ni D, Christofides P D 2015 Chem. Eng. Sci. 136 50Google Scholar

    [4]

    Schmidt H 2006 Ph. D Dissertation (Lausanne: EPFL

    [5]

    Schmitt J P M 1989 Thin Solid Films 174 193Google Scholar

    [6]

    Meyyappan M, Colgan M J 1996 J. Vac. Sci. Technol. A 14 2790Google Scholar

    [7]

    Surendra M, Graves D B 1991 Appl. Phys. Lett 59 2091Google Scholar

    [8]

    Curtins H, Wyrsch N, Favre M, Shah A V 1987 Plasma Chem Plasma P 7 267Google Scholar

    [9]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar

    [10]

    Kim H J, Lee H J 2017 J. Phys. D: Appl. Phys. 122 053301Google Scholar

    [11]

    Kim H J, Lee H J 2017 Plasma Sources Sci. Technol. 26 085003Google Scholar

    [12]

    Kim H J 2021 Vacuum 187 110104Google Scholar

    [13]

    Kim H J, Lee H J 2016 Plasma Sources Sci. Technol. 25 065006Google Scholar

    [14]

    Schmidt H, Sansonnens L, Howling A A, Hollenstein Ch, Elyaakoubi M, Schmitt J P M 2004 J. Appl. Phys. 95 4559Google Scholar

    [15]

    Sansonnens L, Pletzer A, Magni D, Howling A A, Hollenstein C, Schmitt J P M 1997 Plasma Sources Sci. Technol. 6 170Google Scholar

    [16]

    Lieberman M A, Booth J P, Chabert P, Rax J M, Turner M M 2002 Plasma Sources Sci. Technol. 11 283Google Scholar

    [17]

    Chabert P, Raimbault J L, Rax J M, Lieberman M A 2004 Phys. Plasmas 11 1775Google Scholar

    [18]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018Google Scholar

    [19]

    Lieberman M A, Lichtenberg A J, Kawamura E, Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011Google Scholar

    [20]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2017 J. Phys. D: Appl. Phys. 50 495201Google Scholar

    [21]

    Zhao K, Liu Y X, Kawamura E, Wen D Q, Lieberman M A, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055017Google Scholar

    [22]

    Lieberman M A, Kawamura E, Chabert P 2022 Plasma Sources Sci. Technol. 31 114007Google Scholar

    [23]

    Liu J K, Zhang Y R, Zhao K, Wen D Q, Wang Y N 2021 Plasma Sci. Technol. 23 035401Google Scholar

    [24]

    Liu Y X, Gao F, Liu J, Wang Y N 2014 J. Appl. Phys. 116 043303Google Scholar

    [25]

    Han D M, Liu Y X, Gao F, Wang X Y, Li A, Xu J, Jing Z G, Wang Y N 2018 J. Appl. Phys. 123 223304Google Scholar

    [26]

    Han D M, Su Z X, Zhao K, Liu Y X, Gao F, Wang Y N 2021 Plasma Sci. Technol. 23 055402Google Scholar

    [27]

    Sansonnens L, Schmidt H, Howling A A, Hollenstein Ch, Ellert Ch, Buechel A 2006 J. Vac. Sci. Technol. A 24 1425Google Scholar

    [28]

    Chen Z, Rauf S, Collins K 2010 J. Appl. Phys. 108 073301Google Scholar

    [29]

    Faraz T, Arts K, Karwal S, Knoops H C M, Kessels W M M 2019 Plasma Sources Sci. Technol. 28 024002Google Scholar

    [30]

    Kuboi N 2023 J. Micro/Nanopattern. Mats. Metro. 22 041502Google Scholar

    [31]

    Oehrlein G S, Brandstadter S M, Bruce R L, et al. 2024 J. Vac. Sci. Technol. B 42 041501Google Scholar

    [32]

    Chang J, Chang J P 2017 J. Phys. D: Appl. Phys. 50 253001Google Scholar

    [33]

    邱华檀, 王友年, 马腾才 2002 51 1332Google Scholar

    Qiu H T, Wang Y N, Ma T C 2002 Acta Phys. Sin. 51 1332Google Scholar

    [34]

    Tinck S, Bogaerts A 2012 Plasma Processes & Polym. 9 522Google Scholar

    [35]

    Kessels W M M, Hoefnagels J P M, Boogaarts M G H, Schram D C, Van De Sanden M C M 2001 J. Appl. Phys. 89 2065Google Scholar

    [36]

    刘建凯 2022 博士学位论文(大连: 大连理工大学)

    Liu J K 2022 Ph. D Dissertation (Dalian: Dalian University of Technology

    [37]

    Sansonnens L 2005 J. Appl. Phys. 97 063304Google Scholar

    [38]

    Jia W Z, Wang X F, Song Y H, Wang Y N 2017 J. Phys. D: Appl. Phys. 50 165206Google Scholar

    [39]

    Jia W Z, Liu R Q, Wang X F, Liu X M, Song Y H, Wang Y N 2018 Phys. Plasmas 25 093501Google Scholar

    [40]

    Bleecker K D, Bogaerts A, Gijbels R, Goedheer W 2004 Phys. Rev. E 69 056409Google Scholar

    [41]

    Brinkmann R P 2007 J. Appl. Phys. 102 093303Google Scholar

  • 图 1  腔室结构示意图

    Figure 1.  Diagram of chamber structure.

    图 2  不同气压下的考虑(a1)—(a4)和忽略(b1)—(b4)表面波径向衰减情况下的驱动电极电势幅值的二维分布(以下简称电势分布)以及每种情况下的电势分布不均匀度$ \alpha $和表面波波数$ {k}_{{\mathrm{p}}} $, 电极尺寸为2 m × 2 m, 其他放电条件与表2相同

    Figure 2.  Two-dimensional distributions of the potential amplitude on the powered electrode with (a1)–(a4) or without (b1)–(b4) the consideration of the surface wave radial attenuation under different pressures, with the potential nonuniformity factor $ \alpha $ and surface wave number $ {k}_{{\mathrm{p}}} $ for each case. Electrode size: 2 m × 2 m; other discharge conditions are the same as in Table 2.

    图 3  不同气压下的考虑(a1)—(a4)和忽略(b1)—(b4)表面波径向衰减情况下的电势分布以及每种情况下的电势分布不均匀度$ \alpha $和表面波波数$ {k}_{{\mathrm{p}}} $. 电极尺寸为2 m × 2 m; 其他放电条件与表3相同

    Figure 3.  Distributions of the potential with (a1)–(a4) or without (b1)–(b4) the consideration of the surface wave radial attenuation under different pressures, with the potential nonuniformity factor $ \alpha $ and surface wave number $ {k}_{{\mathrm{p}}} $ for each case. Electrode size is 2 m × 2 m; other discharge conditions are the same as in Table 3.

    图 4  不同气压下考虑表面波径向衰减时归一化的电势分布的实部(a1)—(a4)和虚部(b1)—(b4). 电极尺寸为2 m × 2 m; 其他放电条件与表3相同

    Figure 4.  Distributions of the real part (a1)–(a4) and imaginary part (b1)–(b4) of the normalized potential with the consideration of the surface wave radial attenuation. Electrode size is 2 m × 2 m; other discharge conditions are the same as in Table 3.

    图 5  不同案例下电源馈入位置示意图(a1)—(a4)和对应的电势分布(b1)—(b4)以及电势分布不均匀度$ \alpha $. 电极尺寸为2 m × 2 m; 放电气压为3 Torr; 其他放电条件与表2相同

    Figure 5.  Distributions of power input positions (a1)–(a4) under different cases, and the potential (b1)–(b4), as well as the potential nonuniformity factor α. Electrode size is 2 m × 2 m; pressure is 3 Torr; other discharge conditions are the same as in Table 2.

    图 6  不同气压下采用图5(a1)馈入方式模拟计算的电势分布(a), (c)和相同条件下实验观测的沉积薄膜厚度分布(b), (d). 模拟与实验放电参数相同, 电极尺寸为2 m × 2 m; 其他放电条件与表2相同

    Figure 6.  Distributions of the potential from simulation (a), (c) and the deposited film thickness from experiment (b), (d) under different pressures with the case of power input in Fig. 5(a1). Discharge parameters of simulation and experiment are consistent, electrode size is 2 m × 2 m; other discharge conditions are the same as in Table 2.

    图 7  不同气压下采用图5(a3)馈入方式模拟计算的电势分布(a), (c)和相同条件下实验观测的沉积薄膜厚度分布(b), (d). 模拟与实验放电参数相同, 电极尺寸为2 m × 2 m; 其他放电条件与表2相同

    Figure 7.  Distributions of the potential from simulation (a), (c) and the deposited film thickness from experiment (b), (d) under different pressures with the case of power input in Fig. 5(a1). Discharge parameters of simulation and experiment are consistent, electrode size is 2 m × 2 m; other discharge conditions are the same as in Table 2.

    图 8  采用曲面电极和图5(a3)馈入方式情况下放电区域归一化的电势分布. 电极尺寸为2 m × 2 m; 放电气压为 4 Torr; 其他放电条件与表2相同

    Figure 8.  Distributions of the normalized potential with the shaped electrode and the case of power input in Fig. 5(a3). Electrode size is 2 m × 2 m; pressure is 4 Torr; other discharge conditions are the same as in Table 2.

    图 9  采用曲面电极和图5(a3)馈入方式情况下, 当右上角电源偏离理想位置(a)和电源电流幅值偏离理想值(b)时归一化的电势分布(c), (d). 电极尺寸为2 m × 2 m; 放电气压为 4 Torr; 其他放电条件与表2相同

    Figure 9.  Distributions of the normalized potential (c), (d) when the power input position deviates from the ideal position (a) or the current amplitude deviates from the ideal value (b) with the shaped electrode and the case of power input in Fig. 5(a3). Electrode size is 2 m × 2 m; pressure is 4 Torr; other discharge conditions are the same as in Table 2.

    表 1  流体模型中计算硅烷氢气放电的反应及其系数

    Table 1.  Reactions and corresponding coefficients in fluid models for silane/hydrogen discharges.

    序号 反应 阈值能/eV 系数[38,39]
    /(cm3·s–1)
    R1 SiH4+e→SiH4+e cal
    R2 SiH4+e→$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{+} $+H+2e 11.9 cal
    R3 SiH4+e→$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{-} $+H 5.7 cal
    R4 SiH4+e→$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{2}^{-} $+2H 5.7 cal
    R5 SiH4+e→SiH3+H+e 8.3 cal
    R6 SiH4+e→SiH2+2H+e 8.3 cal
    R7 H2+e→H2+e cal
    R8 H2+e→2H+e 8.9 cal
    R9 H2+e→$ {{\mathrm{H}}}_{2}^{+} $+2e 15.4 cal
    R10 Si2H6+e→Si2$ {{\mathrm{H}}}_{4}^{+} $+2H+2e 10.2 cal
    R11 Si2H6+e→SiH3+SiH2+H+e 7.0 cal
    R12 $ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{+} $+ $ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{-} $→2SiH3 1.0×10–8
    R13 $ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{+} $+$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{2}^{-} $→SiH3+SiH2 1.0×10–8
    R14 $ {{\mathrm{H}}}_{2}^{+} $+$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{-} $→SiH3+H2 1.0×10–8
    R15 $ {{\mathrm{H}}}_{2}^{+} $+$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{2}^{-} $→SiH2+H2 1.0×10–8
    R16 Si2$ {{\mathrm{H}}}_{4}^{+} $+$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{-} $→SiH3+H2 1.0×10–8
    R17 Si2$ {{\mathrm{H}}}_{4}^{+} $+$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{2}^{-} $→3SiH2 1.0×10–8
    R18 SiH4+$ {{\mathrm{H}}}_{2}^{+} $→$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{+} $+H2+H 1.0×10–8
    R19 SiH4+H→SiH3+H2 1.2×10–12
    R20 Si2H6+H→H2+Si2H5 7.0×10–12
    R21 Si2H6+H→SiH3+SiH4 3.5×10–12
    R22 SiH3+SiH3→SiH4+SiH2 1.5×10–10
    R23 SiH2+H2→SiH4 2.7×10–14
    R24 SiH2+SiH4→Si2H6 2.3×10–11
    DownLoad: CSV

    表 2  不同气压下周期和空间平均的电子密度($ {n}_{{\mathrm{e}}} $)、鞘层厚度($ {d}_{{\mathrm{s}}{\mathrm{h}}} $)、趋肤深度($ \delta $)、电子-中性粒子弹性碰撞频率($ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $)和电极间有效相对介电常数($ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $); 放电条件为电压幅值100 V, 间距1.6 cm, 功率范围8—12 kW, SiH4/SiH4+H2 = 1%

    Table 2.  Periodically and spatially averaged electron density ($ {n}_{{\mathrm{e}}} $), sheath thickness ($ {d}_{{\mathrm{s}}{\mathrm{h}}} $), skin depth ($ \delta $), electron-neutral elastic collision frequency ($ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $), and effective relative permittivity ($ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $) under different pressures; discharge conditions: voltage 100 V, gap 1.6 cm, power range 8–12 kW, SiH4/SiH4+H2 = 1%.

    p/Torr $ {n}_{{\mathrm{e}}} $/(1015 m–3) $ {d}_{{\mathrm{s}}{\mathrm{h}}} $/cm $ \boldsymbol{\delta } $/cm $ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $/(1010Hz) $ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $
    1 5.98 0.20 6.88 0.36 4.02+0.46i
    2 19.56 0.13 3.80 0.72 6.08+0.68i
    3 37.57 0.08 2.74 1.08 9.30+1.29i
    4 55.81 0.06 2.25 1.44 12.65+2.20i
    DownLoad: CSV

    表 3  不同气压下周期和空间平均的电子密度($ {n}_{{\mathrm{e}}} $)、鞘层厚度($ {d}_{{\mathrm{s}}{\mathrm{h}}} $)、趋肤深度($ \delta $)、电子-中性粒子弹性碰撞频率($ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $)和电极间相对介电常数($ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $), 放电条件为电压幅值50 V, 间距2 cm, 功率大致2—5 kW, SiH4/SiH4+H2 = 90%

    Table 3.  Periodically and spatially electron density ($ {n}_{{\mathrm{e}}} $), sheath thickness ($ {d}_{{\mathrm{s}}{\mathrm{h}}} $), skin depth ($ \delta $), electron-neutral elastic collision frequency ($ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $), and effective relative permittivity ($ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $) under different pressures, discharge conditions: voltage 50 V, gap 2 cm, power range 2–5 kW, SiH4/SiH4+H2 = 90%.

    p/Torr $ {n}_{{\mathrm{e}}} $/(1015 m–3) $ {d}_{{\mathrm{s}}{\mathrm{h}}} $/cm ${\delta } $/cm $ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $/(1010 Hz) $ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $
    1 2.40 0.15 10.86 0.59 3.99+3.02i
    3 7.72 0.10 6.06 1.77 4.33+4.53i
    5 9.12 0.08 5.57 2.94 2.88+4.25i
    7 8.70 0.08 5.70 4.12 1.94+3.18i
    DownLoad: CSV
    Baidu
  • [1]

    Yu C, Gao K, Peng C W, He C R, Wang S B, Shi W, Allen V, Zhang J T, Wang D Z, Tian G Y, Zhang Y F, Jia W Z, Song Y H, Hu Y Z, Colwell J, Xing C F, Ma Q, Wu H T, Guo L Y, Dong G Q, Jiang H, Wu H H, Wang X Y, Xu D C, Li K, Peng J, Liu W Z, Chen D, Lennon A, Cao X M, De Wolf S, Zhou J, Yang X B, Zhang X H 2023 Nat. Energy 8 1375Google Scholar

    [2]

    Crose M, Kwon J S I, Tran A, Christofides P D 2017 Renewable Energy 100 129Google Scholar

    [3]

    Crose M, Sang Il Kwon J, Nayhouse M, Ni D, Christofides P D 2015 Chem. Eng. Sci. 136 50Google Scholar

    [4]

    Schmidt H 2006 Ph. D Dissertation (Lausanne: EPFL

    [5]

    Schmitt J P M 1989 Thin Solid Films 174 193Google Scholar

    [6]

    Meyyappan M, Colgan M J 1996 J. Vac. Sci. Technol. A 14 2790Google Scholar

    [7]

    Surendra M, Graves D B 1991 Appl. Phys. Lett 59 2091Google Scholar

    [8]

    Curtins H, Wyrsch N, Favre M, Shah A V 1987 Plasma Chem Plasma P 7 267Google Scholar

    [9]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar

    [10]

    Kim H J, Lee H J 2017 J. Phys. D: Appl. Phys. 122 053301Google Scholar

    [11]

    Kim H J, Lee H J 2017 Plasma Sources Sci. Technol. 26 085003Google Scholar

    [12]

    Kim H J 2021 Vacuum 187 110104Google Scholar

    [13]

    Kim H J, Lee H J 2016 Plasma Sources Sci. Technol. 25 065006Google Scholar

    [14]

    Schmidt H, Sansonnens L, Howling A A, Hollenstein Ch, Elyaakoubi M, Schmitt J P M 2004 J. Appl. Phys. 95 4559Google Scholar

    [15]

    Sansonnens L, Pletzer A, Magni D, Howling A A, Hollenstein C, Schmitt J P M 1997 Plasma Sources Sci. Technol. 6 170Google Scholar

    [16]

    Lieberman M A, Booth J P, Chabert P, Rax J M, Turner M M 2002 Plasma Sources Sci. Technol. 11 283Google Scholar

    [17]

    Chabert P, Raimbault J L, Rax J M, Lieberman M A 2004 Phys. Plasmas 11 1775Google Scholar

    [18]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018Google Scholar

    [19]

    Lieberman M A, Lichtenberg A J, Kawamura E, Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011Google Scholar

    [20]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2017 J. Phys. D: Appl. Phys. 50 495201Google Scholar

    [21]

    Zhao K, Liu Y X, Kawamura E, Wen D Q, Lieberman M A, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055017Google Scholar

    [22]

    Lieberman M A, Kawamura E, Chabert P 2022 Plasma Sources Sci. Technol. 31 114007Google Scholar

    [23]

    Liu J K, Zhang Y R, Zhao K, Wen D Q, Wang Y N 2021 Plasma Sci. Technol. 23 035401Google Scholar

    [24]

    Liu Y X, Gao F, Liu J, Wang Y N 2014 J. Appl. Phys. 116 043303Google Scholar

    [25]

    Han D M, Liu Y X, Gao F, Wang X Y, Li A, Xu J, Jing Z G, Wang Y N 2018 J. Appl. Phys. 123 223304Google Scholar

    [26]

    Han D M, Su Z X, Zhao K, Liu Y X, Gao F, Wang Y N 2021 Plasma Sci. Technol. 23 055402Google Scholar

    [27]

    Sansonnens L, Schmidt H, Howling A A, Hollenstein Ch, Ellert Ch, Buechel A 2006 J. Vac. Sci. Technol. A 24 1425Google Scholar

    [28]

    Chen Z, Rauf S, Collins K 2010 J. Appl. Phys. 108 073301Google Scholar

    [29]

    Faraz T, Arts K, Karwal S, Knoops H C M, Kessels W M M 2019 Plasma Sources Sci. Technol. 28 024002Google Scholar

    [30]

    Kuboi N 2023 J. Micro/Nanopattern. Mats. Metro. 22 041502Google Scholar

    [31]

    Oehrlein G S, Brandstadter S M, Bruce R L, et al. 2024 J. Vac. Sci. Technol. B 42 041501Google Scholar

    [32]

    Chang J, Chang J P 2017 J. Phys. D: Appl. Phys. 50 253001Google Scholar

    [33]

    邱华檀, 王友年, 马腾才 2002 51 1332Google Scholar

    Qiu H T, Wang Y N, Ma T C 2002 Acta Phys. Sin. 51 1332Google Scholar

    [34]

    Tinck S, Bogaerts A 2012 Plasma Processes & Polym. 9 522Google Scholar

    [35]

    Kessels W M M, Hoefnagels J P M, Boogaarts M G H, Schram D C, Van De Sanden M C M 2001 J. Appl. Phys. 89 2065Google Scholar

    [36]

    刘建凯 2022 博士学位论文(大连: 大连理工大学)

    Liu J K 2022 Ph. D Dissertation (Dalian: Dalian University of Technology

    [37]

    Sansonnens L 2005 J. Appl. Phys. 97 063304Google Scholar

    [38]

    Jia W Z, Wang X F, Song Y H, Wang Y N 2017 J. Phys. D: Appl. Phys. 50 165206Google Scholar

    [39]

    Jia W Z, Liu R Q, Wang X F, Liu X M, Song Y H, Wang Y N 2018 Phys. Plasmas 25 093501Google Scholar

    [40]

    Bleecker K D, Bogaerts A, Gijbels R, Goedheer W 2004 Phys. Rev. E 69 056409Google Scholar

    [41]

    Brinkmann R P 2007 J. Appl. Phys. 102 093303Google Scholar

  • [1] YIN Guiqin, ZHANG Leilei, TUO Sheng. Discharge characteristics of dual-frequency magnetized capacitively coupled Ar/CH4 plasma. Acta Physica Sinica, 2025, 74(14): 145201. doi: 10.7498/aps.74.20250244
    [2] Song Liu-Qin, Jia Wen-Zhu, Dong Wan, Zhang Yi-Fan, Dai Zhong-Ling, Song Yuan-Hong. Numerical investigation of SiO2 film deposition enhanced by capacitively coupled discharge plasma. Acta Physica Sinica, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [3] Wang Li, Wen De-Qi, Tian Chong-Biao, Song Yuan-Hong, Wang You-Nian. Electron heating dynamics and plasma parameters control in capacitively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [4] Cao Yu, Xue Lei, Zhou Jing, Wang Yi-Jun, Ni Jian, Zhang Jian-Jun. Developments of c-Si1-xGex:H thin films as near-infrared absorber for thin film silicon solar cells. Acta Physica Sinica, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [5] Tan Zai-Shang, Wu Xiao-Meng, Fan Zhong-Yong, Ding Shi-Jin. Effect of thermal annealing on the structure and properties of plasma enhanced chemical vapor deposited SiCOH film. Acta Physica Sinica, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [6] Hao Ying-Ying, Meng Xiu-Lan, Yao Fu-Bao, Zhao Guo-Ming, Wang Jing, Zhang Lian-Zhu. Simulations of electrical asymmetry effect on N2-H2 capacitively coupled plasma by particle-in-cell/Monte Carlo model. Acta Physica Sinica, 2014, 63(18): 185205. doi: 10.7498/aps.63.185205
    [7] He Su-Ming, Dai Shan-Shan, Luo Xiang-Dong, Zhang Bo, Wang Jin-Bin. Preparation of SiON film by plasma enhanced chemical vapor deposition and passivation on Si. Acta Physica Sinica, 2014, 63(12): 128102. doi: 10.7498/aps.63.128102
    [8] Ding Yan-Li, Zhu Zhi-Li, Gu Jin-Hua, Shi Xin-Wei, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. Effect of deposition rate on the scaling behavior of microcrystalline silicon films prepared by very high frequency-plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [9] Song Jie, Guo Yan-Qing, Wang Xiang, Ding Hong-Lin, Huang Rui. Influence of excitation frequency on the growth properties of nanocrystalline silicon films with high hydrogen dilution. Acta Physica Sinica, 2010, 59(10): 7378-7382. doi: 10.7498/aps.59.7378
    [10] Zhang Xiao-Dan, Sun Fu-He, Xu Sheng-Zhi, Wang Guang-Hong, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Geng Xin-Hua, Xiong Shao-Zhen, Zhao Ying. Performance optimization of p-i-n type microcrystalline silicon thin films solar cells deposited in single chamber. Acta Physica Sinica, 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [11] Yuan He, Sun Chang-Zheng, Xu Jian-Ming, Wu Qing, Xiong Bing, Luo Yi. Design and fabrication of multilayer antireflection coating for optoelectronic devices by plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2010, 59(10): 7239-7244. doi: 10.7498/aps.59.7239
    [12] Chen Zhao-Quan, Liu Ming-Hai, Liu Yu-Ping, Chen Wei, Luo Zhi-Qing, Hu Xi-Wei. Fabrication of transparent conductive AZO (ZnO:Al) film by plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2009, 58(6): 4260-4266. doi: 10.7498/aps.58.4260
    [13] Wang Miao, Li Zhen-Hua, Takegawa Hitosi, Saito Yahachi. Study on the definite direction growth of carbon nanotubes by the microwave plasma-enhanced chemical vapro phase deposition. Acta Physica Sinica, 2004, 53(3): 888-890. doi: 10.7498/aps.53.888
    [14] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [15] Ji Ai-Ling, Ma Li-Bo, Liu Cheng, Wang Yong-Qian. Low temperature fabrication of nanostructured Si-SiOx and Si-SiNx composite films and their photoluminescence features. Acta Physica Sinica, 2004, 53(11): 3818-3822. doi: 10.7498/aps.53.3818
    [16] Yang Hui-Dong, Wu Chun-Ya, Zhao Ying, Xue Jun-Ming, Geng Xin-Hua, Xiong Shao-Zhen. Investigation on the oxygen contamination in the μc-Si∶H thin film deposited b y VHF-PECVD. Acta Physica Sinica, 2003, 52(11): 2865-2869. doi: 10.7498/aps.52.2865
    [17] Yu Wei, Liu Li-Hui, Hou Hai-Hong, Ding Xue-Cheng, Han Li, Fu Guang-Sheng. Silicon nitride films prepared by helicon wave plasam-enhanced chemical vapour deposition. Acta Physica Sinica, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [18] YE CHAO, NING ZHAO-YUAN, CHENG SHAN-HUA, KANG JIAN. STUDY ON α-C∶F FILMS DEPOSITED BY ELECTRON CYCLOTRONRESONANCE PLASMA CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(4): 784-789. doi: 10.7498/aps.50.784
    [19] NING ZHAO-YUAN, CHENG SHAN-HUA, YE CHAO. CHEMICAL BONDING STRUCTURE OF FLUORINATED AMORPHOUS CARBON FILMS PREPARED BY ELECTRON CYCLOTRON RESONANCE PLASMA CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [20] ZHANG FANG-QING, ZHANG YA-FEI, YANG YING-HU, LI JING-QI, CHEN GUANG-HUA, JIANG XIANG-LIU. PREPARATION OF DIAMOND FILMS BY DC ARC DISCHARGE AND IN SITU MEASUREMENTS OF THE PLASMA BY OPTICAL EMISSION SPECTRA. Acta Physica Sinica, 1990, 39(12): 1965-1969. doi: 10.7498/aps.39.1965
Metrics
  • Abstract views:  323
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  05 March 2025
  • Accepted Date:  16 April 2025
  • Available Online:  06 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回
    Baidu
    map